Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4079-4083    https://doi.org/10.11896/j.issn.1005-023X.2018.23.008
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
亚微米级Ti4O7的制备及其光热转换性能
马晨雨1, 2, 李晓禹2, 张绘2, 李建强2, 赵建玲1, 贺刚3, 李江涛3, 齐涛2
1 河北工业大学材料科学与工程学院,天津 300130;
2 中国科学院过程工程研究所,湿法冶金清洁生产技术国家工程实验室,中国科学院绿色过程与工程重点实验室,北京 100190;
3 中国科学院理化技术研究所低温工程学重点实验室,北京 100190
Preparation and Photothermal Conversion Performance of Submicron Ti4O7
MA Chenyu1, 2, LI Xiaoyu2, ZHANG Hui2, LI Jianqiang2, ZHAO Jianling1, HE Gang3, LI Jiangtao3, QI Tao2
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190;
3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
下载:  全 文 ( PDF ) ( 2044KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光热转换是一种有效的太阳能利用技术,其效率主要取决于光热转换材料的光吸收能力。本研究通过低成本球磨法制备亚微米级的Ti4O7,采用扫描电镜、激光粒度仪、X射线衍射仪、差式扫描热分析仪表征其微观形貌、粒径大小、组成和比热容,用紫外-可见-近红外(UV-Vis-NIR)分光光度计和太阳光模拟器分别测试其光吸收能力和光热转换性能。结果表明,通过球磨法成功制备出粒径约0.35 μm的亚微米Ti4O7粉末,其太阳光全光谱吸收能力约89.5%,光热转换效率约73.7%。当亚微米级Ti4O7漂浮在水面时,太阳光水蒸汽产生效率提高至无光热材料条件下的2.15倍。因此,亚微米级的Ti4O7作为光热转换材料具有很大应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马晨雨
李晓禹
张绘
李建强
赵建玲
贺刚
李江涛
齐涛
关键词:  亚微米Ti4O7  球磨  光热转换效率  太阳光水蒸汽产生效率    
Abstract: Photothermal conversion is considered to be the efficient solar energy utilization technology, which is highly dependent on solar absorption capacity of photothermal conversion materials. In this paper, the method of ball-milling was used to obtain submicron Ti4O7 powders. Scanning electron microscopy (SEM), laser particle size analyzer, X-ray diffractometry (XRD), and scanning calorimetry (DSC) were used to characterize the morphology, compositions of samples, and absorption spectrum was mea-sured by UV-Vis-NIR spectrophotometer, and the photothermal conversion efficiency was performed by solar light simulator. The results showed that the Ti4O7 with particle size of ~0.35 μm were obtained, and its solar light absorption capacity was about 89.5%. Importantly, they can efficiently convert solar energy to thermal energy with photothermal conversion efficiency of 73.7%. When the submicron Ti4O7 was floating on the surface of the water, solar water vapor generation efficiency was increased by 2.15 times compared to the efficiency that submicron Ti4O7 was absent in the solar evaporation water experiment. Therefore, the submicron Ti4O7 is very promising photothermal conversion material.
Key words:  submicron Ti4O7    ball-milling    photothermal conversion efficiency    solar steam generation efficiency
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TK512  
基金资助: 国家自然科学基金面上项目(51671181; 51674232); 国家自然科学基金重点课题(51432004)
作者简介:  马晨雨:男,1994年生,硕士研究生,主要从事新能源材料和纳米材料的研究 E-mail:chyma@ipe.ac.cn;李建强:通信作者,男,1975年生,研究员,主要从事凝固过程界面调控与新材料制备领域的研究 E-mail:jqli@ipe.ac.cn;赵建玲:通信作者,女,1969年生,教授,主要从事氧化物及复合氧化物纳米材料合成及性能研究 E-mail:zhaojl@hebut.edu.cn
引用本文:    
马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
MA Chenyu, LI Xiaoyu, ZHANG Hui, LI Jianqiang, ZHAO Jianling, HE Gang, LI Jiangtao, QI Tao. Preparation and Photothermal Conversion Performance of Submicron Ti4O7. Materials Reports, 2018, 32(23): 4079-4083.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.008  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4079
1 Tong H, Ouyang S X, Bi Y P, et al.Nano-photocatalytic materials: Possibilities and challenges[J].Advanced Materials,2012,24(2):229.
2 Lewis N S.Research opportunities to advance solar energy utilization[J].Science,2016,351(6271):1920.
3 Tao P, Shang W, Song C Y, et al.Bioinspired engineering of thermal materials[J].Advanced Materials,2015,27(3):428.
4 Liu Y M, Yu S T, Feng R, et al.A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J].Advanced Materials,2015,27(17):2768.
5 Wang Z H, Liu Y M, Tao P, et al.Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J].Small,2014,10(16):3234.
6 Zhou L, Tan Y L, Ji D X, et al.Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J].Science Advances,2016,2(4):e1501227.
7 Zhou L, Tan Y L, Wang J Y, et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J].Nature Photonics,2016,10(6):393.
8 Zeng Y, Yao J F, Horri B A, et al.Solar evaporation enhancement using floating light-absorbing magnetic particles[J].Energy & Environmental Science,2011,4(10):4074.
9 Ghasemi H, Ni G, Marconnet A M, et al.Solar steam generation by heat localization[J].Nature Communications,2014,5:4449.
10 Liu Y M, Chen J W, Guo D W, et al.Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J].ACS Applied Materials & Interfaces,2015,7(24):13645.
11 Ito Y, Tanabe Y, Han J H, et al.Multifunctional porous graphene for high-efficiency steam generation by heat localization[J].Advanced Materials,2015,27(29):4302.
12 Li X Q, Xu W C, Tang M Y, et al.Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(49):13953.
13 Hu X Z, Xu W C, Zhou L, et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J].Advanced Materials,2017,29(5):1604031.
14 Zhang L B, Tang B, Wu J B, et al.Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J].Advanced Materials,2015,27(33):4889.
15 Lang X J, Zhao J C, Chen X D.Visible-light-induced photoredox catalysis of dye-sensitized titanium dioxide: Selective aerobic oxidation of organic sulfides[J].Angewandte Chemie-International Edition,2016,55(15):4697.
16 Zhao Z H, Tian J, Sang Y H, et al.Structure, synthesis, and applications of TiO2 nanobelts[J].Advanced Materials,2015,27(16):2557.
17 Jiang R B, Li B X, Fang C H, et al.Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J].Advanced Materials,2014,26(31):5274.
18 Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science,2002,297(5590):2243.
19 Chen X B, Liu L, Yu P Y, et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J].Science,2011,331(6018):746.
20 Ou G, Li Z W, Li D K, et al.Photothermal therapy by using titanium oxide nanoparticles[J].Nano Research,2016,9(5):1236.
21 Zhang X Y, Lin Y H, Zhong X X, et al.Fabrication and characteri-zation of Magneli phase Ti4O7 submicron rods[J].Journal of Mate-rials Science-Materials In Electronics,2016,27(5):4861.
22 Smith J R, Walsh F C, Clarke R L.Electrodes based on Magnéli phase titanium oxides: The properties and applications of Ebonex (R) materials[J].Journal of Applied Electrochemistry,1998,28(10):1021.
23 Zhang X Y, Liu Y, Ye J W, et al.Fabrication and characterisation of Magneli phase Ti4O7 nanoparticles[J].Micro & Nano Letters,2013,8(5):251.
24 Leveque G, Martin O J F. Tunable composite nanoparticle for plasmonics[J].Optics Letters,2006,31(18):2750.
25 Li Xiuqiang, Lin Renxing, Ni George, et al.Three-dimensional artificial transpiration for efficient solar waste-water treatment[J].National Science Review,2018,5(1):70.
26 Court A.A new formula for latent-heat of vaporization of water as a function of temperature-comment[J].Quarterly Journal of the Royal Meteorological Society,1986,112(471):283.
27 Granqvist C G.Solar energy materials[J].Advanced Materials,2003,15(21):1789.
28 Khan Z, Khannam M, Vinothkumar N, et al.Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation[J].Journal of Materials Chemistry,2012,22(1):1.
[1] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[2] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[3] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[4] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[5] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[6] 李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
[7] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[8] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[9] 张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed