Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 68-72    https://doi.org/10.11896/j.issn.1005-023X.2017.012.015
  材料研究 |
纳米相复合Al-Sn合金的反应球磨制备及性能研究*
宋凯强1,2, 曾美琴1,2, 朱敏1,2, 胡仁宗1,2, 鲁忠臣2,3
1 华南理工大学材料科学与工程学院, 广州 510641;
2 广东省先进储能材料重点实验室, 广州 510641;
3 华南理工大学机械与汽车工程学院, 广州 510641
Synthesis of Nano-phase Composite Al-Sn Alloy by Reaction Ball Milling Process and Its Performance
SONG Kaiqiang1,2, ZENG Meiqin1,2, ZHU Min1,2, HU Renzong1,2, LU Zhongchen2,3
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640;
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 1694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用反应球磨制备Al-SnO2-MgH2粉末,然后通过压制和烧结制备出高热稳纳米相复合结构Al-Sn合金。运用 X 射线衍射仪(XRD)和扫描电镜(SEM)等研究反应球磨制备的纳米相复合Al-Sn合金的组织和性能。结果表明:采用两步法和添加MgH2组元的方式所制备的机械合金化(MA)Al-SnO2-MgH2复合粉末,经压制和600 ℃烧结,合金中的SnO2几乎全部被还原成单质Sn,并呈现双尺度结构。其中,共生反应形成的纳米级Sn粒子和Al2O3颗粒均匀弥散地分布在Al基体中,显著提高了合金的硬度,从而使合金表现出低的摩擦系数和磨损量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋凯强
曾美琴
朱敏
胡仁宗
鲁忠臣
关键词:  纳米相复合  Al-Sn合金  反应球磨  高热稳性  摩擦学性能    
Abstract: Reaction ball milling process was used to prepare Al-SnO2-MgH2 alloy powders, then a high thermal stability nanocomposite Al-Sn alloy was obtained by a combination of cold pressing and sintering. The effect of reaction ball milling process on the microstructure and properties were investigated by XRD and SEM. The results show that the SnO2 in the MA Al-SnO2-MgH2 alloy powder, which was produced by a two steps method with the addition of MgH2, was almost deoxidized into monolithic Sn after sintering at 600 ℃. Meanwhile, the in situ formed Sn exhibits a typical dual-scale structure. In particular, the symbiotic formed Sn and Al2O3 were in nano-size and homogeneously distributed in the Al matrix, improving the hardness obviously and resulting in a significantly reduction of friction coefficient and wear volume.
Key words:  nano-phase composite    Al-Sn alloy    reaction ball milling process    high thermal stability    tribological properties
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TF125.3  
基金资助: *国家自然科学基金(51501065);广东省自然科学基金(2014A030310395);中央高校基本科研业务费(2014ZB0020)
通讯作者:  鲁忠臣:通讯作者,男,1986年生,博士,讲师,主要从事金属纳米功能材料方面的研究 E-mail:mezclu@scut.edu.cn   
作者简介:  宋凯强:男,1990年生,硕士研究生,主要从事金属纳米功能材料方面的研究 E-mail:scut_song@163.com
引用本文:    
宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
SONG Kaiqiang, ZENG Meiqin, ZHU Min, HU Renzong, LU Zhongchen. Synthesis of Nano-phase Composite Al-Sn Alloy by Reaction Ball Milling Process and Its Performance. Materials Reports, 2017, 31(12): 68-72.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.015  或          http://www.mater-rep.com/CN/Y2017/V31/I12/68
1 Liu X,Zeng M Q,Zhu M,et al. Promoting the high load-carrying capability of Al-20wt%Sn bearing alloys through creating nanocompo-site structure by mechanical alloying[J]. Wear,2012,294-295:387.
2 Noskova N I, Vil′danova N F, Filippov Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. Phys Met Metall,2006,102(6):646.
3 Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: Overview[J]. Mater Des,2010,31(5):2517.
4 Miyajima T,Tanaka Y,Katsuki E H,et al. Friction and wear pro-perties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J]. Tribol Int,2013,59:17.
5 Liu X, Zeng M Q, Zhu M, et al. Wear behavior of Al-Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J].Wear,2008,265(11-12):1857.
6 Zhu M, Gao Y, Chung C Y, et al. Improvement of the wear beha-viour of Al-Pb alloys by mechanical alloying[J]. Wear,2000,242(1):47.
7 Zhu M, Zeng M Q, Gao Y, et al. Microstructure and wear properties of Al-Pb-Cu alloys prepared by mechanical alloying[J]. Wear,2002,253(7):832.
8 Kaneko J, Sugamata M, Btaž L, et al. Aluminum-low melting metal alloys prepared by mechanical alloying with addition of oxide[J]. Key Eng Mater,2000,188:73.
9 Patel J, Morsi K. Effect of mechanical alloying on the microstructure and properties of Al-Sn-Mg alloy[J]. J Alloys Compd,2012,540:100.
10 Ye Xin, Lu Zhongchen, Zeng Meiqin, et al.Effect of Si addition concentration on the microstructure and wear properties of MA Al-12%Sn[J]. Trans Nonferrous Met Soc China,2014,24 (1):53(in Chinese).
叶新, 鲁忠臣, 曾美琴, 等. Si 添加量对机械合金化Al-12%Sn合金组织与摩擦性能的影响[J]. 中国有色金属学报,2014,24(1):53.
11 Sun P L, Wu S P, Chin T S. Melting point depression of tin nano-particles embedded in a stable alpha-alumina matrix fabricated by ball milling[J]. Mater Lett,2015,144:142.
12 Sun P L, Wu S P, Chang S C, et al. Microstructure and melting behavior of tin nanoparticles embedded in alumina matrix processed by ball milling[J]. Mater Sci Eng A,2014,600:59.
13 Liu Xin, Zeng Meiqin, Ma Ying, et al. Variation of microstructure and hardness of nanocomposite Al-Sn alloy during sintering[J]. Heat Treat Metals,2009(3):27(in Chinese).
刘辛, 曾美琴, 马迎, 等. 纳米复合 Al-Sn 合金烧结中的组织和硬度变化[J]. 金属热处理,2009(3):27.
14 Lu Z C, Zeng M Q, Gao Y, et al. Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al-Sn alloys: A mechanism for improving wear performance[J]. Wear,2013,304(1):162.
15 Lu Z C, Gao Y, Zeng M Q, et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear,2014,309(1):216.
16 Lu Z C, Zeng M Q, Gao Y, et al. Improving wear performance of dual-scale Al-Sn alloys by adding nano-Si@Sn: Effects of Sn nanophase lubrication and nano-Si polishing[J]. Wear,2015,338:258.
[1] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[2] 苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 洋葱状纳米碳烟颗粒在基础油中的摩擦学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1258-1262.
[3] 王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
[4] 国洪建, 贾均红, 张振宇, 梁补女, 陈文元, 李博, 汪建义. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 55-59.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed