Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2653-2658    https://doi.org/10.11896/j.issn.1005-023X.2018.15.017
  金属与金属基复合材料 |
高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响
张修超1, 蔡晓兰1, 周蕾1, 乔颖博1, 吴灿1, 张爽1, 朱伟2
1 昆明理工大学冶金与能源工程学院,昆明 650093;
2 安徽应流集团股份有限公司,合肥 230000
Effect of Ball Milling Technics on Structural Evolution and Uniform Distribution of B4C/Al Composite Powder
ZHANG Xiuchao1, CAI Xiaolan1, ZHOU Lei1, QIAO Yingbo1, WU Can1, ZHANG Shuang1, ZHU Wei2
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Anhui Yingliu Co., Ltd., Hefei 230000
下载:  全 文 ( PDF ) ( 4097KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备B4C增强Al基复合材料存在的难点主要是B4C颗粒在Al基体中的均匀分布及界面结合。本研究采用卧式搅拌高能球磨法制备了B4C/Al复合粉体,研究了搅拌轴转速和球磨时间对B4C/Al复合粉体结构演变及分布均匀性的影响。结果表明,随搅拌轴转速的提高,复合粉体受磨球碰撞时所获能量增大,增强体颗粒瞬间被破碎同时使Al粉发生较大的塑性变形,随球磨时间的延长,破碎的B4C颗粒逐渐在Al基体中分散均匀并与基体焊合,利于粉体实现均匀分布和良好的界面结合。球磨过程中B4C沿颗粒棱边脆性断裂,在Al粉的冷焊变形过程中被嵌入,形成一种片状化的Al粉基体包裹B4C增强相的复合粉体。在搅拌轴转速为600/800 r/min(交变转速,交变频率为1 min),球磨时间为2 h时,B4C/Al复合粉体的粒度得到细化,B4C颗粒在Al基体中分布均匀、界面结合紧密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张修超
蔡晓兰
周蕾
乔颖博
吴灿
张爽
朱伟
关键词:  B4C/Al复合粉体  分布均匀性  界面结合  球磨参数    
Abstract: The main difficulties of preparing the B4C reinforced Al matrix composite are uniform distribution and interfacial bonding of B4C particles in Al matrix. In this study, the composite powder of B4C/Al was fabricated by high-energy ball milling. The effects of rotational speed and milling time on structural evolution and uniform distribution of B4C/Al composite powder were investigated. The results indicate that as the rotational speed up, the composite powder gain more energy from collision with the ball. In addition, the reinforced particles are broken instantly, which lead to large plastic deformation of Al matrix. With the extension of mil-ling time, the broken B4C particles are gradually uniformly distributed in Al matrix and bond with the matrix. This is conducive to uniform distribution and interfacial bonding of the powder. During process of milling, brittle fracture of B4C particles happen along the edge. When the shape of Al powder change from spherical to lamella, B4C particles are embedded in Al matrix, forming a composite powder where B4C reinforcements are wrapped in the flaky Al matrix powder. When the rotational speed is 600/800 r/min (alternating speed with alternating frequency of 1 min) and the milling time is 2 h, the size of B4C/Al composite powder is refined, and B4C particles are uniformly distributed in Al matrix with strong interfacial bonding.
Key words:  B4C/Al composite powder    uniform distribution    interfacial bonding    mill parameters
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TB333  
基金资助: 云南省高校金属粉体制备与设备开发科技创新团队支持计划资助项目(14051693);云南省重大项目(2014FC001)
通讯作者:  蔡晓兰:通信作者,女,1965年生,博士,教授,博士研究生导师,研究方向为特种金属粉体和材料制备及高能球磨设备开发 E-mail:1024868204@qq.com   
作者简介:  张修超:男,1984年生,硕士研究生,研究方向为B4C/Al复合材料的制备 E-mail:308922675@qq.com
引用本文:    
张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
ZHANG Xiuchao, CAI Xiaolan, ZHOU Lei, QIAO Yingbo, WU Can, ZHANG Shuang, ZHU Wei. Effect of Ball Milling Technics on Structural Evolution and Uniform Distribution of B4C/Al Composite Powder. Materials Reports, 2018, 32(15): 2653-2658.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.017  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2653
1 Zhou Z, Wu G, Jiang L, et al. The deformation of B4C particle in the B4C/2024Al composites after high velocity impact[J].Micron,2014,67:107.
2 Tan X, Zeng F, Wang S. et al. Effects of heat treatment on phase contents and mechanical properties of infiltrated B4C/2024Al composites[J].Asian Conference on Aluminum Alloys,2013,24(7):2359.
3 Liu Minglang, Han Zengyao, Lang Jing, et al. Research of boron carbide-aluminum composites[J].Materials Review A: Review Papers,2011,25(12):31(in Chinese).
刘明朗,韩增尧,郎静,等.碳化硼-铝复合材料的研究进展[J].材料导报:综述篇,2011,25(12):31.
4 邹从沛,刘晓珍,龙冲生,等.一种乏燃料贮运用B4C-Al中子吸收板的制备方法:中国,102110484[P].2011-06-29.
5 刘伟,李丘林,李宇,等.一种碳化硼铝基复合材料及中子吸收板:中国,104313400[P].2015-01-28.
6 Liu C X, Sun J L. Erosion behavior of B4C-based ceramic compo-sites[J].Ceramics International,2010,36(4):1297.
7 Kenneth D K. Nuclear engineering handbook[M].New York: CRC Press,2009.
8 Liu Yanqiang, Fan Jianzhong, Sang Jimei, et al. Development of metal matrix composites by powder-metallurgy processing[J].Materials Review A: Review Papers,2010,24(12):8(in Chinese).
刘彦强,樊建中,桑吉梅,等.粉末冶金法制备金属基复合材料的研究及应用[J].材料导报:综述篇,2010,24(12):8.
9 Lee I S, Hsu C J, Chen C F, et al. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing[J].Composites Science & Technology,2011,71(5):693.
10 Zhu Wei, Cai Xiaolan, Wang Ziyang, et al. Research progress on B4C-reinforced Al matrix composite[J].Materials Review,2016,30(z1):478(in Chinese).
朱伟,蔡晓兰,王子阳,等.B4C增强Al基复合材料的研究进展[J].材料导报,2016,30(z1):478.
11 Shen Chunlei, Shi Jianmin, Zhang Ling, et al. Effect of ball milling technics on B4C-Al composite performance[J].Journal of Functional Materials,2011,42(B04):365(in Chinese).
沈春雷,石建敏,张玲,等.球磨工艺对B4C/Al复合粉末性能的影响[J].功能材料,2011,42(B04):365.
12 Zhu Wei. Effect of high energy milling on technology of B4C/Al composite prepared[D].Kunming: Kunming University of Science and Technology,2016(in Chinese).
朱伟.高能球磨法制备B4C/Al复合材料的工艺研究[D].昆明:昆明理工大学,2016.
13 Abdollahi A, Alizadeh A, Baharvandi H R. Dry sliding tribological behavior and mechanical properties of Al2024-5wt.%B4C nanocomposite produced by mechanical milling and hot extrusion[J].Mate-rials & Design,2014,55(6):471.
14 Liu Yue, Qu Guang, Ni Nan, et al. Particle distribution characteristics and properties of 6vol% nano-B4Cp/2009Al composite[J].Acta Materiae Composite Sinica,2017,34(3):597(in Chinese).
刘越,屈光,倪楠,等.6vol%纳米B4Cp/2009Al复合材料的颗粒分布特征及性能[J].复合材料学报,2017,34(3):597.
15 Lin J, Yang H, Yee J K, et al. Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles[J].Acta Materialia,2016,103:128.
16 Lakshmanan P, Kalaichelvan K, Sornakumar T. Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites[J].Materials and Manufacturing Processes,2016,31(10):1275.
17 Yu Mingjun, Cai Xiaolan, Jiang Taiwei, et al. Effect of high energy milling on technology of carbon nanotube reinforced copper powders and properties of composite[J].Hot Working Technology,2014,43(14):105(in Chinese).
余明俊,蔡晓兰,蒋太伟,等.高能球磨工艺对CNTs/Cu复合粉末与材料性能的影响[J].热加工工艺,2014,43(14):105.
18 Magini M, Iasonna A. Energy transfer in mechanical alloying[J].Materials Transactions JIM,1995,36(2):123.
19 Meng Huijuan. Microstructure and properties of Mg-Cu amorphous alloys fabricated by mechanical alloying[D].Tianjin: Tianjin University,2008(in Chinese).
孟慧娟.机械合金化法制备Mg-Cu非晶合金及其结构性能表征[D].天津:天津大学,2008.
20 Zhu Xiangping, Zhou Zhouan, Zhang Quan, et al. Straining and macro stress for Co powders by high-energy ball milling[J].Journal of China West Normal University(Natural Science Edition),2007,28(3):238(in Chinese).
朱湘萍,周宙安,张泉,等.高能球磨Co系纳米粉末的应变和宏观应力[J].西华师范大学学报(自然科学版),2007,28(3):238.
21 Nachum S, Fleck N A, Ashby M F, et al. The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu-Al2O3[J].Materials Science & Engineering A,2010,527(20):5065.
[1] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[2] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
[3] 孙畅, 李龙, 周德敬. 层状复合材料界面结合强度非传统评价方法*[J]. 《材料导报》期刊社, 2017, 31(11): 59-67.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed