Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16001-16007    https://doi.org/10.11896/cldb.20060024
  无机非金属及其复合材料 |
基于有序结构镍钴双金属氧族化合物纳米阵列/碳泡沫复合材料的柔性不对称超级电容器
孙义民, 易荣华, 段纪青, 周爱军
武汉工程大学材料科学与工程学院,等离子体化学与新材料湖北省重点实验室,武汉 430205
Flexible Asymmetric Supercapacitors Based on Well-ordered Bimetallic Nickel-cobalt Chalcogenides Nanoarray/Carbon Foam Composites
SUN Yimin, YI Ronghua, DUAN Jiqing, ZHOU Aijun
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
下载:  全 文 ( PDF ) ( 6943KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳化三聚氰胺泡沫为柔性基底,负载高度有序的镍钴双金属氧/硫/硒化物纳米棒阵列和氧化铋纳米片阵列,分别作为正负极构筑了一系列不对称柔性超级电容器。研究表明,镍钴硒化物电容性能明显优于氧化物和硫化物,所制备的不对称电容器在1 mA/cm2电流密度下面积电容可以达到620.9 mF/cm2,功率密度和能量密度分别为3.75 mW/cm3和0.97 mWh/cm3,循环6 000次电容保持率为91.2%,重复弯折200次后,仍保留88.6%的初始比电容。因此,基于镍钴硒化物和氧化铋的不对称超级电容器在高性能柔性储能器件领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙义民
易荣华
段纪青
周爱军
关键词:  镍钴氧族化合物  氧化铋  纳米阵列  多孔碳泡沫  不对称超级电容器    
Abstract: Aseries of flexible asymmetric supercapacitors were constructed by using carbonized melamine foam as flexible substrate, which was decorated by high-ordered nickel cobalt oxide/sulfide/selenide nanorods arrays and bismuth oxide nanosheets and used as positive and negative electrode respectively. The performance of Ni-Co selenide is better than those of oxide and sulfide, hence the as-obtained asymmetric supercapacitor shows a high area capacitance of 620.9 mF/cm2 at 1 mA/cm2, the power density and energy density are 3.75 mW/cm3 and 0.97 mWh/cm3, respectively, and the capacity retention rate of 6 000 cycles is 91.2%. After bending for 200 times, the device still maintains 88.6% of its initial capacitance. Therefore, the asymmetric supercapacitor based on Ni-Co selenide and bismuth oxide has great potential in the field of high-performance flexible energy storage devices.
Key words:  nickel-cobalt chalcogenides    bismuth oxide    nanoarray    porous carbon foam    asymmetric supercapacitor
发布日期:  2021-09-07
ZTFLH:  TM53  
基金资助: 湖北省自然科学基金面上项目(2019CFB415)
通讯作者:  zhouaijun3@sina.com   
作者简介:  孙义民,2010年毕业于武汉大学化学与分子科学学院,获理学博士学位。目前为武汉工程大学材料科学与工程学院副教授。研究方向为新型纳米材料在能量存储与转换以及电化学传感器方面的应用。
周爱军,武汉工程大学材料科学与工程学院教授。1986年和1995年分别于武汉大学化学系和四川大学化学系获得理学学士和硕士学位。目前致力于特种橡胶和新能源材料的研究。
引用本文:    
孙义民, 易荣华, 段纪青, 周爱军. 基于有序结构镍钴双金属氧族化合物纳米阵列/碳泡沫复合材料的柔性不对称超级电容器[J]. 材料导报, 2021, 35(16): 16001-16007.
SUN Yimin, YI Ronghua, DUAN Jiqing, ZHOU Aijun. Flexible Asymmetric Supercapacitors Based on Well-ordered Bimetallic Nickel-cobalt Chalcogenides Nanoarray/Carbon Foam Composites. Materials Reports, 2021, 35(16): 16001-16007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060024  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16001
1 Shao Y, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118, 9233.
2 Sun Y, Cheng Y, He K, et al. RSC Advances, 2015, 5, 10178.
3 Yuan C,Wu H B, Xie Y, et al. Angewandte Chemie International Edition, 2014, 53(6), 1488.
4 Mahasweta C, Samik S, Sachindranath D, et al. Journal of Alloys and Compounds, 2020, 821(25), 153503.
5 Wang J, Shen L F, Nie P, et al. Journal of Materials Chemistry A, 2015, 3, 2853.
6 Shen L F, Che Q, Li H S, et al. Advanced Functional Materials, 2014, 24, 2630.
7 Cai D P, Wang D D, Wang C X, et al. Electrochim Acta, 2015, 151, 35.
8 Chen T, Wei S T, Wang Z H. ChemPlusChem, 2020, 85, 43.
9 Zhao X, Yang Y, Li Y, et al. Journal of Materials Science, 2016, 51, 3724.
10 Guo K, Cui S, Hou H, et al. Dalton Transactions, 2016, 45(48), 19458.
11 Liu R, Ma L, Niu G, et al. Advanced Functional Materials, 2017, 27, 1701635.
12 Zeng Y, Lin Z, Meng Y, et al. Advanced Materials, 2016, 28, 9188.
13 Li L, Zhang X, Zhang Z, et al. Journal of Materials Chemistry A, 2016, 4, 16635.
14 Zhao J, Li Z J, Shen T, et al. Journal of Materials Chemistry A, 2019, 7, 7918.
15 Sethi M, Bhat D K. Journal of Alloys and Compounds, 2019, 781, 1013.
16 Xu P, Zeng W, Luo S H, et al. Electrochimica Acta, 2017, 241, 41.
17 An W D, Liu L, Gao Y F, et al. RSC Advances, 2016, 6, 75251.
18 Yi R H, Wang R C, Duan J Q, et al. Electrochimica Acta, 2020, 338, 135845.
19 Zheng K T, Li G N, Xu C J, et al. Applied Surface Science, 2019, 490, 137.
20 Li Y H, Peng H R, Yang L, et al. Journal of Materials Science, 2016, 51, 7108.
21 Liu S Y, Xie J, Li H B, et al. Journal of Materials Chemistry A, 2014, 2(42), 18125.
22 Yang P H, Xiao X, Li Y Z, et al. ACS Nano, 2013, 7(3), 2617.
23 Lu X H, Yu M H, Wang G M, et al. Advanced Materials, 2013, 25(2), 267.
24 Yang Z, Chen Z H. Nanotechnology, 2019, 30(24), 245402.
25 Wang L B, Yang H L, Liu X X, et al. Angewandte Chemie International Edition, 2017, 56(4), 1105.
26 Lu X H, Zeng Y X, Yu M H, et al. Advanced Materials, 2014, 26(19), 3148.
27 Lu X F, Chen X Y, Zhou W, et al. ACS Applied Materials & Interfaces, 2015, 7(27), 14843.
28 Wang Z L, Zhu Z L, Qiu J H, et al. Journal of Materials Chemistry C, 2014, 2(7), 1331.
[1] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[2] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[3] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[4] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[5] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[6] 鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed