Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3990-3998    https://doi.org/10.11896/cldb.18050039
  高分子与聚合物基复合材料 |
基于AAO模板的高聚物纳米阵列薄膜的研究进展
鲁亚稳1, 常胜男1, 刘元军1, 刘皓1,2, 赵晓明1, 李晓久1
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学智能可穿戴电子纺织品研究所,天津 300387
Research Progress of Polymer Nano-array Thin Films Based on AAO Templates
LU Yawen1, CHANG Shengnan1, LIU Yuanjun1, LIU Hao1,2, ZHAO Xiaoming1, LI Xiaojiu1
1 School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387
2 Institute of Smart Wearable Electronic Textiles, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 3673KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料是指特征尺寸或晶体尺寸在纳米级的一种超细材料,是由极其细小的颗粒所组成的固体材料。纳米材料因其纳米尺寸和大比表面积等特点,具有许多独特的物理性质和化学性质,被广泛应用于陶瓷、催化、光学、生物医学、环境保护等领域。
纳米材料根据规整程度分为规整纳米材料和非规整纳米材料。非规整纳米材料,如静电纺丝制备的纳米纤维材料,具有较高的长径比,而准确地控制纳米材料的直径或者制备直径小于100 nm的纳米材料仍有较大的困难,并且非规整材料具有较低的结构取向性。而规整纳米材料多以阵列的形式呈现,如纳米棒、纳米柱、纳米纤维、纳米球以及核壳包覆等特殊结构,具有结构高度有序、尺寸一致、结构分布均匀等优点。
纳米材料的制备方法根据制备手段主要分为物理法(物理粉碎法和物理凝聚法)和化学法(沉淀法、溶胶-凝胶法、模板合成法、自组装法)。模板合成法可以精确控制纳米材料尺寸而且模板可以大量复制,因此,规整纳米材料的制备多采用模板合成法。近年来,以高聚物纳米阵列为敏感元件制备的柔性传感器、纳米发电机、超级电容器和生物医学检测器件等因具有高灵敏度、高精度和小型化等优点而备受关注。
本文对多孔阳极氧化铝(AAO)模板和高聚物纳米阵列薄膜的制备方法进行了系统的概述,并对高聚物纳米阵列制备方法的优缺点和应用进行了归纳,还探讨了高聚物纳米阵列的现存问题和应用前景,为AAO模板和高聚物纳米阵列薄膜的制备及应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁亚稳
常胜男
刘元军
刘皓
赵晓明
李晓久
关键词:  多孔阳极氧化铝(AAO)  高聚物纳米阵列  薄膜  模板法    
Abstract: Nanomaterials refer to an ultra-fine material with a characteristic size or crystal size on the order of nanometers, which is a solid material composed of extremely fine particles. Due to the nanometer size and large specific surface area, nanomaterials have many unique physical and chemical properties, which are widely used in ceramics, catalysis, optics, biomedicine, environmental protection and other fields.
Nanomaterials are classified into regular nanomaterials and irregular nanomaterials according to the degree of regularity. Non-regular nanomaterials, such as nanofiber materials prepared by electrospinning, have a high aspect ratio. However, the diameter accuracy of nanofibers having a diameter of less than 100 nm is very difficult. Moreover, the irregular nanomaterials have a low structural orientation. The regular nanomaterials are generally presented in the form of arrays, such as nanorods, nanopillars, nanofibers, nanospheres, and core-shell structure, which have the advantages of high order structure, uniform size, and uniform distribution of nanostructures.
The preparation method of the nanomaterial is mainly classified into a physical method (physical pulverization method and physical coagulation method) and a chemical method (precipitation method, sol-gel method, template synthesis method, self-assembly method) according to the preparation means. The size of the nanomaterials produced by the template synthesis method can be precisely controlled, and the template can be reused in a large amount. Therefore, the template synthesis method is often used to prepare regular nanomaterials. In recent years, flexible sensors, nano-generators, supercapacitors, and biomedical detection devices, which are prepared by using nano-array as sensitive components, have attracted much attention due to their high sensitivity, high precision, and miniaturization.
In this paper, the preparation methods of porous anodized aluminum oxide (AAO) template and polymer nano-array film are systematically summarized. The advantages, disadvantages and applications of the polymer nano-array film preparation method are summarized. The existing problems and application prospects of polymer nano-array film are also discussed, which provides a reference for the preparation and application of AAO template and polymer nano-array.
Key words:  anodic aluminum oxide (AAO)    polymer nano-array    film    template synthesis method
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TB383  
基金资助: 中国博士后科学基金(2016M591390);天津市自然科学基金(18JCYBJC18500);中国纺织工业联合会(2017060)
作者简介:  鲁亚稳,2015年7月毕业于中原工学院,获得工学学士学位。现为天津工业大学纺织科学与工程学院硕博连读研究生。目前主要的研究领域为微纳米结构柔性传感器。
刘皓,副教授,博士研究生导师,现为天津工业大学智能可穿戴电子纺织品研究所常务副所长。主要研究方向是柔性传感器、智能服装、规整纳米材料和纺织测试仪器。已经发表期刊论文50多篇,其中有30篇被SCI或EI收录,申请发明专利10余项,获得授权发明专利4项。
引用本文:    
鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
LU Yawen, CHANG Shengnan, LIU Yuanjun, LIU Hao, ZHAO Xiaoming, LI Xiaojiu. Research Progress of Polymer Nano-array Thin Films Based on AAO Templates. Materials Reports, 2019, 33(23): 3990-3998.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050039  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3990
1 Masuda H, Fukuda K. Science,1995,268(5216),1466. 2 Masuda H, Hasegwa F, Ono S. Cheminform,1997,28(40),L127.3 Schwirn K, Lee W, Hillebrand R, et al. ACS Nano,2008,2,302.4 Xu Y F, Liu H, Li X J, et al. Materials Letters,2015,151,79.5 Xu Y, Li X, Liu H, et al. Journal of Nanomaterials,2016,2016,1.6 Kurowska E, Brzózka A, Jarosz M, et al. Electrochimica Acta,2013,104(8),439.7 Li Z Y, Leung C, Gao F, et al. Sensors,2015,15(9),22473.8 Lee S, Hinchet R, Lee Y, et al. Advanced Functional Materials,2014,24(8),1163.9 Wang X, Ma X, Church J, et al. Materials Letters,2017,192,107.10 Chang C W, Cheng M H, Ko H W, et al. Soft Matter,2017,14(1),35.11 Ko H W, Higuchi T, Chang C W, et al. Soft Matter,2017,13(32),5428.12 Tarnacka M, Madejczyk O, Kaminski K, et al. Macromolecules,2017,50(13),5188.13 Kim Y, Mun J, Yu G, et al. Macromolecular Research,2017,25,656.14 Lizundia E, Sáenz-Pérez M, Patrocinio D, et al. Materials Science & Engineering C,2017,75,229.15 Pang C, Lee G Y, Kim T I, et al. Nature Materials,2012,11,795.16 Chen X, Shao J, Li X, et al. IEEE Transactions on Nanotechnology,2016,15,295.17 Chen X, Shao J, An N, et al. Journal of Materials Chemistry C,2015,3(45),11806.18 Ouyang H, Tian J, Sun G, et al. Advanced Materials,2017,29(40),1703456.19 Dudem B, Ko Y H, Leem J W, et al. ACS Applied Materials & Interfaces,2015,7(37),20520.20 Song W, Gan B, Jiang T, et al. ACS Nano,1936,10(8),8097.21 Li Z, Gao F, Gu Z, et al. Sensors & Actuators B Chemical,2017,243,1092.22 Li J, Liu L, Wang P, et al. Electrochimica Acta,2014,121(3),369.23 Mijangos C, Hernandez R, Martin J. Progress in Polymer Science,2016,54-55,148.24 Steinhart M, Wendorff J H, Greiner A, et al. Science,2002,296(5575),1997.25 Xu Y F, Liu H, Li X J. Chemical Industry and Engineering Progress,2015,34(12),4265(in Chinese).徐艳芳,刘皓,李晓久.化工进展,2015,34(12),4265.26 Han T, Wen P Y, Wang C Y, et al. Materials Review A: Review Papers,2010,24(1),115(in Chinese).韩婷,温培源,王晨雨,等.材料导报:综述篇,2010,24(1),115.27 Cao G B, Zhu W, Li J R, et al. Materials Review A: Review Papers,2014,28(4),153(in Chinese).曹国宝,朱文,李镜人,等.材料导报:综述篇,2014,28(4),153.28 Ma D, Li S Y. In: China National Conference on Functional Materials and Applications. Chongqing, 2007,pp.2046(in Chinese).马迪,李淑英.中国功能材料及其应用学术会议.重庆,2007,pp.2046.29 Bao E B, Ji B W, He G M, et al. World Sci-tech R & D,2007,29(2),31(in Chinese).鲍恩波,姬保卫,何广明,等.世界科技研究与发展,2007,29(2),31.30 Feng Y, Zhao J W, Gao F. Semiconductor Optoelectronics,2006,27(2),108(in Chinese).冯异,赵军武,高芬.半导体光电,2006,27(2),108.31 Kim E, Xia Y, Whitesides G M. Nature,1995,376(6541),581.32 Liu H, Zhu L L, Xu Y F, et al. Journal of Nano Research,2017,45,84.33 Hatice D, Antonis G, George F, et al. Macromolecules,2009,42(8),2881.34 Grimm S, Giesa R, Sklarek K, et al. Nano Letters,2008,8(7),1954.35 Chang Y. Anodic aluminum oxide with large pore interval and its double-layer structure: Research and application. Ph.D. Thesis, South China University and Technology, China,2013(in Chinese).常毅.大孔间距阳极氧化铝及其双层结构的研究与应用.博士学位论文,华南理工大学,2013.36 Sun C, Luo J, Wu L, et al. ACS Applied Materials & Interfaces,2010,2(5),1299.37 Qin X F, Zhang J Q, Meng X J, et al. Applied Surface Science,2015,328,459.38 Zaraska L, JaskuB M, Sulka G D. Materials Letters,2016,171,315.39 Rahman M M, Marsal L F, Pallarès J, et al. ACS Applied Materials & Interfaces,2013,5(24),13375.40 Li J, Li C, Cheng C, et al. ACS Applied Materials & Interfaces,2012,4(10),5678.41 Yamauchi Y, Nagaura T, Ishikawa A, et al. Journal of the American Chemical Society,2008,130(31),10165.42 Jin S L, Gu G H, Kim H, et al. Chemistry of Materials,2001,13(7),2387.43 Han X, Maiz J, Mijangos C, et al. Nanotechnology,2014,25(20),205302.44 Blaszczyklezak I, Hernández M, Mijangos C. Macromolecules,2013,46(12),4995.45 Steinhart M, Senz S,Wehrspohn R B, et al. Macromolecules,2003,36(10),3646.46 Martin J, Campoy-Quiles M, Nogales A, et al. Soft Matter,2014,10(18),3335.47 Martin J, Martin-Gonzalez M. Nanoscale,2012,4(18),5608.48 Guan Y, Liu G, Ding G, et al. Macromolecules,2015,48(8),2526.49 Zhang M, Dobriyal P, Chen J T, et al. Nano Letters,2006,6(5),1075.50 Xiang H, Shin K, Kim T, et al. Macromolecules,2004,37(15),5660.51 Maiz J, Zhao W, Yu G, et al. Polymer,2014,55(16),4057.52 Casas M T, Michell R M, Blaszczyk-Lezak I, et al. Polymer,2015,70,282.53 Blaszczyk-Lezak I. Express Polymer Letters,2016,10(3),259.54 Martin J, Hernandez-Velez M, de Abril O, et al. European Polymer Journal,2012,48(4),712.55 Martin J, Martin-Gonzalez M, del Campo A, et al. Nanotechnology,2012,23(38),385305.56 Askar S, Wei T, Tan A W, et al. Journal of Chemical Physics,2017,146(20),203323.57 Zhang L, Jiang B, Weng C, et al. Zhongnan Daxue Xuebao,2017,48(4),952.58 Guo H, Yang C, Li X, et al. Nanoscience & Nanotechnology Letters,2017,9(12),2112.59 Sanz B, Blaszczyklezak I, Mijangos C, et al. Langmuir the ACS Journal of Surfaces & Colloids,2016,32(31),7860.60 Feng X, Jin Z. Macromolecules,2009,42(3),569.61 Pasquali M, Liang J, Shivkumar S. Nanotechnology,2011,22(37),375605.62 Martin J, Mijangos C. Langmuir the ACS Journal of Surfaces & Colloids,2009,25(2),1181.63 Martin J, Vazquez M, Hernandez-Velez M, et al. Nanotechnology,2008,19(17),175304.64 Martin J, Vazquez M, Hernandez-Velez M, et al. Journal of Nanoscience & Nanotechnology,2009,9(10),5898.65 Jin S, Lee Y, Jeon S M, et al. Journal of Materials Chemistry,2012,22(44),23368.66 Schlitt S, Greiner A, Wendorff J H. Macromolecules,2008,41(9),3228.67 Costa N, Li P, Xu Y, et al. Journal of Nanoparticle Research,2018,20(4),103.68 Lee C W, Wei T H, Chang C W, et al. Macromol Rapid Commun,2012,33(16),1381.69 Ko H W, Chi M H, Chang C W, et al. Macromol Rapid Commun,2015,36(5),439.70 Ko H W, Chi M H, Chang C W, et al. ACS Macro Letters,2015,4(7),717.71 Wei T H, Chi M H, Tsai C C, et al. Langmuir the ACS Journal of Surfaces & Colloids,2013,29(32),9972.72 Chen J T, Wei T H, Chang C W, et al. Macromolecules,2014,47(15),5227.73 Chi M H, Kao Y H, Wei T H, et al. Nanoscale,2014,6(3),1340.74 Choi Y S, Jing Q, Datta A, et al. Energy & Environmental Science,2017,10(10),2180.75 Sanz B, Ballard N, ángel Marcos-Fernández, et al. Polymer,2018,140,131.76 Tarnacka M, Dzienia A, Maksym P, et al. Macromolecules,2018,51(12),4588.77 Tseng K P, Tsai Y T, Shyue J J, et al. Chemical Physics Letters,2017,683,43.78 Chu C W, Higaki Y, Cheng C H, et al. Polymer Chemistry,2017,8(15),2309.79 Jo H, Haberkorn N, Pan J A, et al. Langmuir the ACS Journal of Surfaces & Colloids,2016,32(25),6437.80 Salunke R S, Kasar C K, Bangar M A, et al. Journal of Materials Science Materials in Electronics,2017,28(19),14672.81 Back J W, Lee S, Hwang C R, et al. Macromolecular Research,2011,19(1),33.82 Jang J, Oh J H. Chemical Communications,2004,10(7),882.83 Chen D, Zhao W, Russell T P. ACS Nano,2012,6(2),1479.84 Nakagawa M, Nakaya A, Hoshikawa Y, et al. ACS Applied Materials & Interfaces,2016,8(44),30628.85 Kim S, Hyun S, Lee J, et al. Advanced Functional Materials,2018,28(23),1.86 Palacios R, Nassiopoulou A, Sailor M, et al. Physica Status Solidi C Current Topics in Solid State Physics,2009,6,1584.87 Lee W, Ji R, Goesele U, et al. Nature Materials,2006,5(9),741.88 Xue L J, Han Y C. Progress in Polymer Science,2011,36(2),269.89 Li J, Liu L, Wang P, et al. Electrochimica Acta,2014,121(3),369.90 Wang Z, Liu S, Wu P, et al. Analytical Chemistry,2009,81(4),1638.91 Song W, Gan B, Jiang T, et al. ACS Nano,2016,10(8),8097.92 Cui M, Wang F, Miao Z, et al. RSC Advances,2015,5(80),65627.93 Pannopard P, Boonyuen C, Warakulwit C, et al. Carbon,2015,94(5),836.94 Yang C S, Mahmood A, Kim B, et al. 2d Materials,2016,3(1),011007.95 Ahn Y K, Park J, Shin D, et al. Journal of Materials Chemistry A,2015,3(20),10715.96 Wei Q, Fu Y, Zhang G, et al. Nano Energy,201,55,234.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[5] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[6] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[7] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[8] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[9] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[10] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[11] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[12] 刁春丽, 董乐, 杨毅, 刘韩星. 电介质储能薄膜的研究现状及提高储能密度的方法[J]. 材料导报, 2019, 33(23): 3921-3929.
[13] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[14] 刘康, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺. 金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J]. 材料导报, 2019, 33(19): 3251-3256.
[15] 段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春. 金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展[J]. 材料导报, 2019, 33(19): 3313-3321.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed