Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3313-3321    https://doi.org/10.11896/cldb.18070242
  金属与金属基复合材料 |
金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展
段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春
中国工程物理研究院材料研究所,绵阳 621908
Electronic Structure and γ-α Phase Transition Mechanism of Cerium: a Reviewof Theoretical Models and Experimental Researches Using Angle-resolvedPhotoemission Spectroscopy
DUAN Yu, LUO Xuebing, ZHANG Yun, ZHANG Wen, FENG Wei, HAO Qunqing, LUO Lizhu, LIU Qin, CHEN Qiuyun, TAN Shiyong, ZHU Xiegang, LAI Xinchun
Institute of Materials, China Academy of Engineering Physics, Mianyang 621908
下载:  全 文 ( PDF ) ( 2722KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含f电子的镧系和锕系元素是元素周期表中最复杂的成员,他们常常表现出奇异的物理特性。其中最简单而具代表性的就是金属Ce的γ-α相变,该相变不仅晶体结构保持面心立方(fcc)不变,而且伴随有约15%的体积塌缩和磁性变化(γ-Ce为遵循Curie-Weiss定理的顺磁体,而α-Ce具有Pauli顺磁性)。多年来,大量理论和实验研究都致力于理解这一奇特相变的微观机制,理论上曾提出了三种解释该相变的模型,包括跃迁模型(Promotional model)、类Mott转变模型和Kondo模型。其中跃迁模型已因与实验结果不符而被摈弃,而类Mott转变模型主要强调f-f电子的相互作用在相变过程中的变化,Kondo模型则强调相变过程中4f电子与传导电子间相互作用的变化,此二者都在不断发展,至今仍无定论。
目前学界基本认同Ce的γ-α相变的奇特性与其特殊电子结构有关。Ce的外层电子结构为4f15d16s2,其中4f电子在实空间是局域,但其能级与价带的5d和6s电子能级的能量接近,造就了4f电子的局域-巡游双重特性,故外界环境的微小变化可能会大大改变Ce的电子结构,进而影响其宏观物理性质。
如今,分子束外延技术(MBE)的应用实现了高质量Ce单晶薄膜的制备,结合先进的角分辨光电子能谱(ARPES)可以对Ce的电子结构进行直接观察,便于探究Ce的γ-α相变过程中4f电子的行为,并以此进一步探讨其相变微观机制。此外,Kondo模型具有光电子能谱(PES)可见的特征,且在单杂质安德森模型(SIAM)框架下采用相关计算方法(GS、LDA+U、DMFT等)对Ce的PES特征的理论解释也已较成功地实现,因此Kondo模型逐渐成为目前较为流行的Ce的γ-α相变机制。
本文首先简要回顾了Ce的γ-α同构相变的三个主要理论模型,即跃迁模型(Promotional model)、类Mott转变模型和Kondo模型的物理图像及部分实验证据;然后介绍了高质量Ce单晶薄膜的制备方法,并重点分析总结近年来对Ce单晶薄膜在ARPES方面的重要研究成果,主要包括:(1)Ce薄膜的室温能带结构及可能的表面态;(2)与波矢k关联的4f电子与传导电子的杂化;(3)4f电子与传导电子的杂化随温度的演化。大部分ARPES结果都为描述Ce的γ-α相变的Kondo模型提供了实验佐证。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段煜
罗学兵
张云
张文
冯卫
郝群庆
罗丽珠
刘琴
陈秋云
谭世勇
朱燮刚
赖新春
关键词:  金属Ce  单晶薄膜  电子结构  γ-α相变  理论模型  Kondo模型  f电子  角分辨光电子能谱(ARPES)    
Abstract: Lanthanides and actinides containing f-electrons are the most complex members of the periodic table, and tend to exhibit peculiar macroscopic physical properties, among which the γ-α phase transition in cerium is one of the most typical representatives. This iso-structual phase transition involves both a volume collapse of more than 15% and the magnetic properties transition from Curie-Weiss like to Pauli-like paramagnetism. Over the years, a variety of theoretical and experimental researches have been dedicated to understand the microscopic mechanism of the γ-α phase transition in cerium, and three main theoretical models were proposed to interpret this phase transition, i.e. promotional model, Mott-like transition model and Kondo model. Among them, the promotional model has faded out for discrepancies with experimental results. On the other hand, both Mott-like model which emphasizes the f-f electrons interaction during the phase transition and Kondo model which values the interaction between 4f electrons and conduction electrons have acquired intensive research efforts, and their validities are still unsettled.
However, there has been a consensus that the peculiarity of γ-α phase transition in cerium is related to its unusual 4f electronic structure. The outer electronic configuration of cerium is 4f15d16s2, in which the 4f electrons are localized but are similar in energy level with the 5d and 6s electrons, resulting in the dual characteristics (localization and itinerancy) of the 4f electrons. Therefore, a slight change of the chemical environment can lead to significant change in electronic structure of cerium and alter its macroscopic physical properties.
Nowadays, researchers have successfully prepared high-quality cerium single crystal films by applying the technology of molecular beam epitaxy (MBE). Moreover, the electronic structure of Ce can be directly observed by angle-resolved photoemission spectroscopy (ARPES), enabling us to easily study the behavior of 4f electrons during γ-α phase transition. It’s worth noting that the Kondo model has become more and more popular, as more experimental results from photoemission spectroscopy show evidences of Kondo scenario, and theoretical calculations, such as single impurity Anderson model (SIAM) based Gunnarsson-Schonhammer (GS) model, LDA+U and LDA+DMFT, also support the Kondo model.
This contribution contains a brief summary over the three above-mentioned theoretical models for the γ-α phase transition in cerium together with some relevant experiments, and subsequently an introduction of the preparation method of high-quality single crystal cerium films as well as a detailed survey on the relevant experimental researches using ARPES technique. Several aspects of recent ARPES results were stressed, including i. the electronic structures and possible surface state of cerium film under room temperature, ii. the hybridization of 4f electrons with conduction electrons related to wave vector k, and iii. the correlation between temperature and the hybridization of 4f electrons with conduction electrons.
Key words:  cerium    single crystal thin film    electronic structure    γ-α phase transition    theoretical model    Kondo model    f electron    angle-resolved photoemission spectroscopy (ARPES)
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  O469  
基金资助: 科学挑战计划专题(TZ2016004);国家重点基础研究发展计划项目(2015CB921303);中物院院长基金(201501040)
作者简介:  段煜,2016年毕业于西北工业大学,获得复合材料与工程专业学士学位,现为中国工程物理研究院材料研究所核燃料循环与材料专业的在读硕士生,在朱燮刚副研究员的指导下进行学习研究。目前主要研究领域为铈镧合金薄膜的制备及其相变行为和电子结构。朱燮刚,中国工程物理研究院材料研究所副研究员、硕士研究生导师。2006年本科毕业于清华大学物理系,2014年获得清华大学物理系理学博士学位。主要从事拓扑绝缘体、f电子金属和重费米子体系材料的分子束外延制备及其电子结构表征方面的工作。近年来,在相关领域发表SCI收录论文30余篇,包括Nature Physics,Science Advance,Advanced Materials,Scientific Reports,Physics Review B,Nano Research等。zhuxiegang@caep.cn
引用本文:    
段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春. 金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展[J]. 材料导报, 2019, 33(19): 3313-3321.
DUAN Yu, LUO Xuebing, ZHANG Yun, ZHANG Wen, FENG Wei, HAO Qunqing, LUO Lizhu, LIU Qin, CHEN Qiuyun, TAN Shiyong, ZHU Xiegang, LAI Xinchun. Electronic Structure and γ-α Phase Transition Mechanism of Cerium: a Reviewof Theoretical Models and Experimental Researches Using Angle-resolvedPhotoemission Spectroscopy. Materials Reports, 2019, 33(19): 3313-3321.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070242  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3313
1 Lock J M. Proceedings of the Physical Society,1957,70(B),566.2 Wittig J. Physical Review Letters,1968,21,1250.3 Gschneidner K A Jr, et al. Journal of Physics F:Metal Physics,1976,6,49.4 Xue D F, Sun C T, Chen X Y. Journal of Rare Earths,2017,35(8),837.5 Johansson B. Philosophical Magazine,1974,30(3),469.6 Koskenmaki D C, Gschneidner K A Jr. Handbook on the physics and chemistry of rare earths,1978,1,337.7 Allen J W, Martin R M. Physical Review Letters,1982,49(15),1106.8 Casadei M, Ren X, Rinke P. Physical Review B,2016,93(7),51.9 Coqblin B, Blandin A. Advances in Physics,1968,17,281.10 Ramirez R, Falicov L M. Physical Review B,1971,3(8),2425.11 Hirst L L. Journal of Physics and Chemistry of Solids,1974,35(9),1285.12 Lavagna M, Lacroix C, Cyrot M. Physics Letters A,1982,90,210.13 Allen J W, Liu L Z. Physical Review B,1992,46,5047.14 Allen J W, Oh S J, Gunnarsson O, et al. Advances in Physics,1986,35,275.15 Malterre D, Grioni M, Baer Y. Advances in Physics,1996,45(4),299.16 Colvin R V, Arajs S, Peck J M. Physical Review,1961,122,14.17 Burr C R, Ehara S. Physical Review,1966,149,551.18 MacPherson M R, et al. Physical Review Letters,1971,26,20.19 Koskimaki D C, Gschneidner K A Jr. Physical Review B,1975,11,4463.20 Gustafson D R, McNutt J D, Roellig L O. Physical Review,1969,183,435.21 Gempel R F, Gustafson D R, Willenberg J D. Physical Review B,1980,5,2082.22 Kornstadt U, Lasser R, Lengeler B. Physical Review B,1980,21,1898.23 Nikolaev A V, Tsvyashchenko A V. Physics-Uspekhi,2012,55(7),657.24 Murani A P, Levett S J, Taylor J W. Physical Review Letters,2005,95,256403.25 Murani A P, et al. Physical Review B,2002,65,094416.26 Baer Y, Busch G. Physical Review Letters,1973,31(1),35.27 Berwer L. Journal of the Optical Society of America,1971,61,1101.28 Herbst J F, Lowy D N, et al. Physical Review B,1972,6,1913.29 Eriksson O, Brooks M S, Johansson B. Physical Review B,1990,41,7311.30 Hjelm A, et al. Physical Review B,1994,50,4332.31 Beiden S V, et al. Physical Review Letters,1997,79,3970.32 Johansson B, et al. Physical Review Letters,1995,7,2335.33 Murani A P, Bowden Z A, Taylor A D, et al. Physical Review B,1993,48(18),13981.34 Patthey F, Delley B, Schneider W D, et al. Physical Review Letters,1985,55,1518.35 Patthey F, Imer J M, Schneider W D, et al. Physical Review B,1990,42,8864.36 Johansson L I, Allen J W, Gustafsson T, et al. Solid State Communication,1978,28,53.37 Liu S H, Ho K M. Physical Review B,1982,26,7052.38 Wieliczka D, Weaver J H, Lynch D W, et al. Physical Review B,1982,26,7056.39 Norman M R, Koelling D D, Freeman A J, et al. Physical Review Letters,1984,53,1673.40 Wieliczka D M, Olson C G, Lynch D W. Physical Review B,1984,29,3028.41 Jensen E, Wieliczka D M. Physical Review B,1984,30,7340.42 Rosina G, Bertel E, Netzer F P, et al. Physical Review B,1986,33,2364.43 Gu C, Wu X, Olson C G, et al. Physical Review Letters,1991,67,1622.44 Weschke E, Laubschat C, Simmons T, et al. Physical Review B,1991,44,8304.45 Garnier M, Breuer K, Purdie D, et al. Physical Review Letters,1997,78,4127.46 Weschke E, Höhr A, Kaindl G, et al. Physical Review B,1998,58,3682.47 Tjernberg O, Finazzi M, Duò L, et al. Physica B,2000,281,723.48 Kucherenko Y, Molodtsov S L, Heber M, et al. Physical Review B,2002,66,155116.49 Schiller F, Heber M, Servedio V D P, et al. Physical Review B,2003,68,233103.50 Vescovo E, Carbone C. Physical Review B,1996,53,4142.51 Wuilloud E, Moser H R, Schneider W D, et al. Physical Review B,1983,28,7354.52 Allen J W, Kang J S, Oh S J. Journal of Magnetism and Magnetic Mate-rials,1987,63,515.53 Vyalikh D V, Kucherenko Yu, Danzenbacher S, et al. Physical Review Letters,2006,96,026404.54 Chen Q Y, Feng W, Xie D H, et al. Physical Review B,2017,97,155155.55 Kotliar G, Savrasov S Y, Haule K, et al. Reviews of Modern Physics,2006,78,865.56 Shim J H, Haule K, Kotliar G. Nature,2007,446,513.57 Grioni M, Joyce J, Chambers S A, et al. Physical Review Letters,1984,53,2331.58 Fujimori A, Grioni M, Weaver J H. Physical Review B,1985,31,8291.59 Eriksson O, Albers R C, Boring A M, et al. Physical Review B,1991,43,3137.60 Laubschat C, Weschke E, Holtz C, et al. Physical Review Letters,1990,65,1639.61 Kaindl G, Weschke E, Laubschat C, et al. Physica B,1993,44,186.62 Braicovich L, Duo L, Vavassori P, et al. Physica B,1995,206,77.63 Duo L, De Rossi S, Vavassori P, et al. Physical Review B,1996,54,17363.64 Laubschat C, Weschke E, Domke M, et al. Surface Science,1992,269,605.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 李亚敏, 江璐, 赵旺, 陈银萍. 铜掺杂对γ'相影响的第一性原理研究[J]. 材料导报, 2019, 33(18): 3085-3088.
[3] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[4] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[5] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[6] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[7] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
[8] 李滚, 张亮, 杜宁, 庞小峰. 生物体系介电性质的复合材料理论模型*[J]. 《材料导报》期刊社, 2017, 31(15): 36-41.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed