Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 36-41    https://doi.org/10.11896/j.issn.1005-023X.2017.015.006
  材料综述 |
生物体系介电性质的复合材料理论模型*
李滚1, 张亮1, 杜宁1, 庞小峰2,3
1 西安工业大学电子信息工程学院,西安710021;
2 电子科技大学物理电子学院,成都 610054;
3 中国科学院国际材料物理中心,沈阳110015;
Composite Material Theoretical Models for Dielectric Behavior of Biological Systems
LI Gun1, ZHANG Liang1, DU Ning1, PANG Xiaofeng2,3
1 School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021;
2 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054;
3 International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015;
下载:  全 文 ( PDF ) ( 1335KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物体系作为一类特殊材料,其电学性质是研究仿生材料设计、电阻抗成像以及电磁场生物效应的发生与防护等问题的基础。目前已有较多复合材料模型被应用于生物体系介电性质问题的研究,但由于生物组织离体后的介电特性会发生较大变化,故已有经典复合材料介电特性模型用于阐释生物体系介电特性还存在一定局限性。从几类典型复合材料理论模型的适用性出发,介绍了生物体系介电特性理论研究进展,总结了理论研究结果与实验测量结果的差异性。分析了复合材料理论模型在生物体系介电性质理论研究中应用的不足并提出了改进的建议,对复合材料理论模型在生物体系电学特性问题研究领域的进一步发展与应用等问题提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李滚
张亮
杜宁
庞小峰
关键词:  复合材料  介电模型  理论模型  生物体系    
Abstract: Biological tissue is a kind of special material. Its electrical properties are the basis of studying the design of bio-mimetic materials, the development of electrical impedance imaging and the occurrence and protection of biological effects of electromagnetic fields. At present, many composite materials theories have been applied in exploring the dielectric properties of biological systems. However, there are some limitations of the classical composite dielectric properties model in explaining the dielectric properties of biological tissue due to the changes in bio-system itself. From the perspective of applicability of several typical theoretical compo-sites models, the progress of dielectric theory used in biological system is introduced. The difference between theoretical and experimental results is summarized. Then, some shortcomings of the theoretical model of composite materials in studying the dielectric properties of biological systems are analyzed, and the corresponding suggestions are puts forward. The prospects of further development and application of the composite theoretical model in the research of electrical characteristics of biological systems are also discussed.
Key words:  composite materials    dielectric model    theoretical model    biological system
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB33  
基金资助: *国家重点基础研究发展计划(973)项目(212011CB503701);西安工业大学校长基金(XAGDXJJ14011)
作者简介:  李滚:男,1982年生,博士,讲师,主要从事生物材料学以及计算材料学方面研究 E-mail:ligun@xatu.edu.cn
引用本文:    
李滚, 张亮, 杜宁, 庞小峰. 生物体系介电性质的复合材料理论模型*[J]. 《材料导报》期刊社, 2017, 31(15): 36-41.
LI Gun, ZHANG Liang, DU Ning, PANG Xiaofeng. Composite Material Theoretical Models for Dielectric Behavior of Biological Systems. Materials Reports, 2017, 31(15): 36-41.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.006  或          http://www.mater-rep.com/CN/Y2017/V31/I15/36
1 Dissado L A, Hill R M. Non-exponential decay in dielectrics and dynamics of correlated systems[J]. Nature,1979,279:685.
2 Sonja H, Daniel E, Jurg F. Modeling effective dielectric properties of materials containing diverse types of biological cells[J]. J Phys D: Appl Phys,2010,43(36):365405.
3 Hekstra D R, White K I, Socolich M A, et al. Electric-field-stimulated protein mechanics[J]. Nature,2016,540:400.
4 Amad A A S, Loula A F D, Novotny A A. A new method for to-pology design of electromagnetic antennas in hyperthermia therapy[J]. Appl Mathematical Modelling,2017,42:209.
5 Antonio E F, Stefano G, Francesco M, et al. A composite hydrogel for brain tissue phantoms[J]. Mater Des, 2016,112:227.
6 Reinecke T, Hagemeier L, Ahrens S, et al. A novel coplanar probe design for fast scanning of edema in human brain tissue via dielectric measurements[J]. Sensors Actuators B,2015,220:522.
7 Schmidt R, Webb A. A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials[J]. J Magn Resonance,2016,262:8.
8 Morris A, Griffiths H, Gough W. A numerical model for magnetic induction tomographic measurements in biological tissues[J]. Physio-logical Measurement,2001,22(1):113.
9 Truong B C, Tuan H D, Fitzgerald A J, et al. A dielectric model of human breast tissue in Terahertz regime[J]. IEEE Trans Biomedical Eng,2015,62(2):699.
10 Rekanos I T, Papadopoulos T G. An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media[J]. IEEE Trans Antennas Propagation,2010,58(11):3666.
11 Cole K S, Cole R H. Dispersion and absorption in dielectrics: I. Alternating current characteristics[J]. J Chem Phys,1941,9(4):341.
12 Alisoy H Z, Us S B, Alagoz B B. An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers[J]. Optik,2013,124(21):5218.
13 Sonmezoglu S, Sonmezoglu O A. Optical and dielectric properties of double helix DNA thin films[J]. Mater Sci Eng C, 2011,31(8):1619.
14 Sonja H, Daniel E, Jürg F. Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition[J]. J Phys D: Appl Phys,2012,45(2):025301.
15 Man H Y, Carvalho M J. A Monte-Carlo maplet for the study of the optical properties of biological tissues[J]. Computer Phys Commun,2007,177(12):965.
16 Schmidt C E, Baier J M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials,2000,21(22):2215.
17 Salman S, Lanlin Z L, Volakis J L. A wearable wrap-around sensor for monitoring deep tissue electric properties[J]. IEEE Sensors J,2014,14(8):2447.
18 Mishra V, Bouayad H, Schned A, et al. A real-time electrical impedance sensing biopsy needle[J]. IEEE Trans Biomedical Eng,2012,59(12):3327.
19 Gomez T J, Fukuhara Y, He S, et al. A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues[J]. Computers Biol Medicine,2015,61(C):144.
20 Zilberti L. Charge relaxation in biological tissues with extremely high permittivity[J]. IEEE Magn Lett,2016,7:1.
21 Peyman A, Gabriel C. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies[J]. Phys Medicine Biol,2010,55(15):N413.
22 El-Lakkani A. Dielectric response of some biological tissues[J]. Bioe-lectromagnetics,2001,22(4):272.
23 Angeluts A A, Balakin A V, Evdokimov M G, et al. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J]. Quantum Electron,2014,44(7):614.
24 Bertocchi C, Wang Y, Ravasio A, et al. Nanoscale architecture of cadherin-based cell adhesions[J]. Nat Cell Biol 2016,19(1):28.
25 Khalil H, Jamal D, Maryam T. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis[J]. Biosensors Bioelectron,2013,49(10):348.
26 Peyman A, Gabriel C. Dielectric properties of rat embryo and foetus as a function of gestation[J]. Phys Medicine Biol, 2012, 57(8):2103.
27 Marzec E, Sosnowski P, Olszewski J, et al. Dielectric properties of hypothermic rat artery[J]. Colloids Surf B Biointerfaces,2013,101(1):1.
28 Sasaki K, Isimura Y, Fujii K, et al. Dielectric property measurement of ocular tissues up to 110 GHz using 1mm coaxial sensor[J]. Phys Medicine Biol,2015,60(16):6273.
29 Peyman A. Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge[J]. Prog Biophys Molecular Biol,2011,107(3):434.
30 Peyman A, Kos B, Djoki M. Variation in dielectric properties due to pathological changes in human liver[J]. Bioelectromagnetics,2015,36(8):603.
31 Jabłecka A, Olszewski J, Marzec E. Dielectric properties of keratin-water system in diabetic and healthy human fingernails[J]. J Non-Crystalline Solids,2009,355(50):2456.
32 Dewarrat F, Falco L, Mueller M, et al. A dielectric inverse problem applied to human skin measurements during glucose excursions[J]. Physiological Measurement,2011,32(32):1285.
33 Fornesleal A, Garciapardo C, Frasson M, et al. Dielectric characte-rization of healthy and malignant colon tissues in the 0.5—18 GHz frequency band[J]. Phys Medicine Biol,2016,61(20):7334.
34 Huang W H, Chui C K, Teoh S H, et al. A multiscale model for bioimpedance dispersion of liver tissue[J]. IEEE Trans Biomedical Eng,2012,59(6):1593.
35 Fuller W B. Solid mixture permittivities[J]. J Chem Phys,1955,23:1514.
36 Prasad A, Prasad K. Effective permittivity of random composite media: A comparative study[J]. Physica B,2007, 396(1-2):132.
37 Looyenga H. Dielectric constants of heterogeneous mixtures[J]. Physica,1965,31(3):401.
38 Garnett J C M. Colours in metal glasses and in metallic films[J]. Philosophical Transactions of the Royal Society of London,1904,203:385.
39 Tjia T H, Bordewijk P, Bottcher C J F. On the notion of dielectric friction in the theory of dielectric relaxation[J]. Adv Molecular Relaxation Processes,1974,6(1):19.
40 Skipetrov S E. Effective dielectric function of a random medium[J]. Phys Rev B,1999,60(18):12705.
41 Jebbor N, Bri S. Effective permittivity of periodic composite mate-rials: Numerical modeling by the finite element method[J]. J Electrostatics,2012,70(4):393.
42 Jayasundere N, Smith B V. Dielectric constant for binary piezoelectric 0-3 composites[J]. J Appl Phys,1993,73(5):2462.
43 Lichtenecker K, Rother K. Die herleitung des logarithm mischenmischungs-gesetzesaus allegemeinen prinzipien der stationaren stromung[J]. Physikalische Zeitschrift,1931,32:255.
44 Kondrat S, Kornyshev A, Stoeckli F, et al. The effect of dielectric permittivity on the capacitance of nanoporous electrodes[J]. Electrochem Commun,2013,34(5):348.
45 Petrovsky V, Jasinski P, Dogan F. Effective dielectric constant of two phase dielectric systems[J]. J Electroceram,2012, 28(2):1.
46 Xia X D, Wang Y, Zhong Z, et al. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites[J]. Carbon,2017,111:221.
47 Asami K, Sekine K. Dielectric modelling of cell division for budding and fission yeast[J]. J Phys D Appl Phys,2007, 40(4):1128.
48 López-García J J, Horno J, Grosse C. Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution[J]. J Colloid Interface Sci,2014,428:308.
49 Schwan H P. Linear and nonlinear electrode polarization and biological materials[J]. Annals Biomedical Eng,1992, 20(3):269.
50 Zohdi T I, Kuypers F A, Lee W C. Estimation of red blood cell vo-lume fraction from overall permittivity measurements[J]. Int J Eng Sci,2010,48(11):1681.
51 Zhang L Y, Chen S N, Zhao Q, et al. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells[J]. Analytica Chim Acta,2015,880:130.
52 Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle[J]. Physica B,2010, 405(8):2014.
53 Biasio A D, Cametti C. Polarizability of spherical biological cells in the presence of localized surface charge distributions at the membrane interfaces[J]. Phys Rev E,2010,82(2):021917.
54 Prodan E, Camelia P, Miller J H. The dielectric response of spherical live cells in suspension: An analytic solution[J]. Biophys J,2008,95(9):4174.
55 Pang X F, Chen S D, Wang Xi H, et al. Influences of electromagnetic energy on bio-energy transport through protein molecules in living systems and its experimental evidence[J]. Int J Molecular Sci,2016,17(8):1130.
56 Mehrdad S, Lynda M T, Oliver S, et al. A new open-source toolbox for estimating the electrical properties of biological tissues in the Terahertz frequency band[J]. J Infrared Millimeter Terahertz Waves,2013,34(9):529.
57 Fujii M. Maximum frequency range limit of multi-pole Debye models of human body tissues[J]. IEEE Microwave Wireless Components Lett,2012,22(2):73.
58 Clegg J, Robinson M P. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties[J]. Phys Medicine Biol,2012,57(19):6227.
59 Gavrilova N D, Novik V K, Vorobyev A V, et al. Negative dielectric permittivity of poly(acrylic acid) pressed pellets[J]. J Non-Crystalline Solids,2016,452:1.
60 Xu L, Liu C, Cao Z, et al. Particle size influence on effective permittivity of particle-gas mixture with particle clusters[J]. Particuo-logy,2013,11(2):216.
61 Hermann W. The static dielectric permittivity of ionic liquids[J]. J Molecular Liquids,2014,192:185.
62 Yvanoff M, Venkataraman J. A feasibility study of tissue characte-rization using LC sensors[J]. IEEE Trans Antennas Propagation,2009,57(4):885.
63 Amooey A A. Improved mixing rules for description of the permittivity of mixtures[J]. J Molecular Liquids,2013, 180(1):31.
64 Nikonorova N A, Balakina M Y, Fominykh O D, et al. Dielectric spectroscopy and molecular modeling of branched methacrylic (co)polymers containing nonlinear optical chromophores[J]. Mater Chem Phys,2016,181:217.
65 Wolf M, Gulich R, Lunkenheimer P, et al. Broadband dielectric spectroscopy on human blood[J]. Biochimica et Biophysica Acta,2011,1810(8):727.
66 Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev E,2010, 81(2):021913.
67 Martellosio A, Pasian M, Bozzi M, et al. 0.5-50 GHz dielectric characterisation of breast cancer tissues[J]. Electron Lett,2015,51(13):974.
68 Peyman A, Holden S J, Watts S, et al. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: In vivo, in vitro and systematic variation with age[J]. Phys Medicine Biol,2007,52(8):2229.
69 Li G. Dielectric properties of rat blood in coagulation process[J]. Appl Mech Mater,2013,373:1007.
70 Raicu V, Saibara T, Enzan H, et al. Dielectric properties of rat liver in vivo: Analysis by modeling hepatocytes in the tissue architecture[J]. Bioelectrochem Bioenergetics,1998,47(2):333.
71 Peon-Fernandez J, Martin-Herrero J, Banerji N, et al. Numerical study of effective permittivity in composite systems[J]. Appl Surf Sci,2004,226(1):78.
72 Zakharov P, Dewarrat F, Caduff A, et al. The effect of blood content on the optical and dielectric skin properties[J]. Physiological Measurement,2011,32(1):131.
73 Caroline B R, George R, Adam P G, et al. Terahertz time domain spectroscopy of human blood[J]. IEEE Trans Terahertz Sci Tech-nol,2013,17(4):774.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed