Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 36-41    https://doi.org/10.11896/j.issn.1005-023X.2017.015.006
  材料综述 |
生物体系介电性质的复合材料理论模型*
李滚1, 张亮1, 杜宁1, 庞小峰2,3
1 西安工业大学电子信息工程学院,西安710021;
2 电子科技大学物理电子学院,成都 610054;
3 中国科学院国际材料物理中心,沈阳110015;
Composite Material Theoretical Models for Dielectric Behavior of Biological Systems
LI Gun1, ZHANG Liang1, DU Ning1, PANG Xiaofeng2,3
1 School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021;
2 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054;
3 International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015;
下载:  全 文 ( PDF ) ( 1335KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物体系作为一类特殊材料,其电学性质是研究仿生材料设计、电阻抗成像以及电磁场生物效应的发生与防护等问题的基础。目前已有较多复合材料模型被应用于生物体系介电性质问题的研究,但由于生物组织离体后的介电特性会发生较大变化,故已有经典复合材料介电特性模型用于阐释生物体系介电特性还存在一定局限性。从几类典型复合材料理论模型的适用性出发,介绍了生物体系介电特性理论研究进展,总结了理论研究结果与实验测量结果的差异性。分析了复合材料理论模型在生物体系介电性质理论研究中应用的不足并提出了改进的建议,对复合材料理论模型在生物体系电学特性问题研究领域的进一步发展与应用等问题提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李滚
张亮
杜宁
庞小峰
关键词:  复合材料  介电模型  理论模型  生物体系    
Abstract: Biological tissue is a kind of special material. Its electrical properties are the basis of studying the design of bio-mimetic materials, the development of electrical impedance imaging and the occurrence and protection of biological effects of electromagnetic fields. At present, many composite materials theories have been applied in exploring the dielectric properties of biological systems. However, there are some limitations of the classical composite dielectric properties model in explaining the dielectric properties of biological tissue due to the changes in bio-system itself. From the perspective of applicability of several typical theoretical compo-sites models, the progress of dielectric theory used in biological system is introduced. The difference between theoretical and experimental results is summarized. Then, some shortcomings of the theoretical model of composite materials in studying the dielectric properties of biological systems are analyzed, and the corresponding suggestions are puts forward. The prospects of further development and application of the composite theoretical model in the research of electrical characteristics of biological systems are also discussed.
Key words:  composite materials    dielectric model    theoretical model    biological system
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB33  
基金资助: *国家重点基础研究发展计划(973)项目(212011CB503701);西安工业大学校长基金(XAGDXJJ14011)
作者简介:  李滚:男,1982年生,博士,讲师,主要从事生物材料学以及计算材料学方面研究 E-mail:ligun@xatu.edu.cn
引用本文:    
李滚, 张亮, 杜宁, 庞小峰. 生物体系介电性质的复合材料理论模型*[J]. 《材料导报》期刊社, 2017, 31(15): 36-41.
LI Gun, ZHANG Liang, DU Ning, PANG Xiaofeng. Composite Material Theoretical Models for Dielectric Behavior of Biological Systems. Materials Reports, 2017, 31(15): 36-41.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.006  或          https://www.mater-rep.com/CN/Y2017/V31/I15/36
1 Dissado L A, Hill R M. Non-exponential decay in dielectrics and dynamics of correlated systems[J]. Nature,1979,279:685.
2 Sonja H, Daniel E, Jurg F. Modeling effective dielectric properties of materials containing diverse types of biological cells[J]. J Phys D: Appl Phys,2010,43(36):365405.
3 Hekstra D R, White K I, Socolich M A, et al. Electric-field-stimulated protein mechanics[J]. Nature,2016,540:400.
4 Amad A A S, Loula A F D, Novotny A A. A new method for to-pology design of electromagnetic antennas in hyperthermia therapy[J]. Appl Mathematical Modelling,2017,42:209.
5 Antonio E F, Stefano G, Francesco M, et al. A composite hydrogel for brain tissue phantoms[J]. Mater Des, 2016,112:227.
6 Reinecke T, Hagemeier L, Ahrens S, et al. A novel coplanar probe design for fast scanning of edema in human brain tissue via dielectric measurements[J]. Sensors Actuators B,2015,220:522.
7 Schmidt R, Webb A. A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials[J]. J Magn Resonance,2016,262:8.
8 Morris A, Griffiths H, Gough W. A numerical model for magnetic induction tomographic measurements in biological tissues[J]. Physio-logical Measurement,2001,22(1):113.
9 Truong B C, Tuan H D, Fitzgerald A J, et al. A dielectric model of human breast tissue in Terahertz regime[J]. IEEE Trans Biomedical Eng,2015,62(2):699.
10 Rekanos I T, Papadopoulos T G. An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media[J]. IEEE Trans Antennas Propagation,2010,58(11):3666.
11 Cole K S, Cole R H. Dispersion and absorption in dielectrics: I. Alternating current characteristics[J]. J Chem Phys,1941,9(4):341.
12 Alisoy H Z, Us S B, Alagoz B B. An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers[J]. Optik,2013,124(21):5218.
13 Sonmezoglu S, Sonmezoglu O A. Optical and dielectric properties of double helix DNA thin films[J]. Mater Sci Eng C, 2011,31(8):1619.
14 Sonja H, Daniel E, Jürg F. Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition[J]. J Phys D: Appl Phys,2012,45(2):025301.
15 Man H Y, Carvalho M J. A Monte-Carlo maplet for the study of the optical properties of biological tissues[J]. Computer Phys Commun,2007,177(12):965.
16 Schmidt C E, Baier J M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials,2000,21(22):2215.
17 Salman S, Lanlin Z L, Volakis J L. A wearable wrap-around sensor for monitoring deep tissue electric properties[J]. IEEE Sensors J,2014,14(8):2447.
18 Mishra V, Bouayad H, Schned A, et al. A real-time electrical impedance sensing biopsy needle[J]. IEEE Trans Biomedical Eng,2012,59(12):3327.
19 Gomez T J, Fukuhara Y, He S, et al. A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues[J]. Computers Biol Medicine,2015,61(C):144.
20 Zilberti L. Charge relaxation in biological tissues with extremely high permittivity[J]. IEEE Magn Lett,2016,7:1.
21 Peyman A, Gabriel C. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies[J]. Phys Medicine Biol,2010,55(15):N413.
22 El-Lakkani A. Dielectric response of some biological tissues[J]. Bioe-lectromagnetics,2001,22(4):272.
23 Angeluts A A, Balakin A V, Evdokimov M G, et al. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J]. Quantum Electron,2014,44(7):614.
24 Bertocchi C, Wang Y, Ravasio A, et al. Nanoscale architecture of cadherin-based cell adhesions[J]. Nat Cell Biol 2016,19(1):28.
25 Khalil H, Jamal D, Maryam T. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis[J]. Biosensors Bioelectron,2013,49(10):348.
26 Peyman A, Gabriel C. Dielectric properties of rat embryo and foetus as a function of gestation[J]. Phys Medicine Biol, 2012, 57(8):2103.
27 Marzec E, Sosnowski P, Olszewski J, et al. Dielectric properties of hypothermic rat artery[J]. Colloids Surf B Biointerfaces,2013,101(1):1.
28 Sasaki K, Isimura Y, Fujii K, et al. Dielectric property measurement of ocular tissues up to 110 GHz using 1mm coaxial sensor[J]. Phys Medicine Biol,2015,60(16):6273.
29 Peyman A. Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge[J]. Prog Biophys Molecular Biol,2011,107(3):434.
30 Peyman A, Kos B, Djoki M. Variation in dielectric properties due to pathological changes in human liver[J]. Bioelectromagnetics,2015,36(8):603.
31 Jabłecka A, Olszewski J, Marzec E. Dielectric properties of keratin-water system in diabetic and healthy human fingernails[J]. J Non-Crystalline Solids,2009,355(50):2456.
32 Dewarrat F, Falco L, Mueller M, et al. A dielectric inverse problem applied to human skin measurements during glucose excursions[J]. Physiological Measurement,2011,32(32):1285.
33 Fornesleal A, Garciapardo C, Frasson M, et al. Dielectric characte-rization of healthy and malignant colon tissues in the 0.5—18 GHz frequency band[J]. Phys Medicine Biol,2016,61(20):7334.
34 Huang W H, Chui C K, Teoh S H, et al. A multiscale model for bioimpedance dispersion of liver tissue[J]. IEEE Trans Biomedical Eng,2012,59(6):1593.
35 Fuller W B. Solid mixture permittivities[J]. J Chem Phys,1955,23:1514.
36 Prasad A, Prasad K. Effective permittivity of random composite media: A comparative study[J]. Physica B,2007, 396(1-2):132.
37 Looyenga H. Dielectric constants of heterogeneous mixtures[J]. Physica,1965,31(3):401.
38 Garnett J C M. Colours in metal glasses and in metallic films[J]. Philosophical Transactions of the Royal Society of London,1904,203:385.
39 Tjia T H, Bordewijk P, Bottcher C J F. On the notion of dielectric friction in the theory of dielectric relaxation[J]. Adv Molecular Relaxation Processes,1974,6(1):19.
40 Skipetrov S E. Effective dielectric function of a random medium[J]. Phys Rev B,1999,60(18):12705.
41 Jebbor N, Bri S. Effective permittivity of periodic composite mate-rials: Numerical modeling by the finite element method[J]. J Electrostatics,2012,70(4):393.
42 Jayasundere N, Smith B V. Dielectric constant for binary piezoelectric 0-3 composites[J]. J Appl Phys,1993,73(5):2462.
43 Lichtenecker K, Rother K. Die herleitung des logarithm mischenmischungs-gesetzesaus allegemeinen prinzipien der stationaren stromung[J]. Physikalische Zeitschrift,1931,32:255.
44 Kondrat S, Kornyshev A, Stoeckli F, et al. The effect of dielectric permittivity on the capacitance of nanoporous electrodes[J]. Electrochem Commun,2013,34(5):348.
45 Petrovsky V, Jasinski P, Dogan F. Effective dielectric constant of two phase dielectric systems[J]. J Electroceram,2012, 28(2):1.
46 Xia X D, Wang Y, Zhong Z, et al. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites[J]. Carbon,2017,111:221.
47 Asami K, Sekine K. Dielectric modelling of cell division for budding and fission yeast[J]. J Phys D Appl Phys,2007, 40(4):1128.
48 López-García J J, Horno J, Grosse C. Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution[J]. J Colloid Interface Sci,2014,428:308.
49 Schwan H P. Linear and nonlinear electrode polarization and biological materials[J]. Annals Biomedical Eng,1992, 20(3):269.
50 Zohdi T I, Kuypers F A, Lee W C. Estimation of red blood cell vo-lume fraction from overall permittivity measurements[J]. Int J Eng Sci,2010,48(11):1681.
51 Zhang L Y, Chen S N, Zhao Q, et al. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells[J]. Analytica Chim Acta,2015,880:130.
52 Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle[J]. Physica B,2010, 405(8):2014.
53 Biasio A D, Cametti C. Polarizability of spherical biological cells in the presence of localized surface charge distributions at the membrane interfaces[J]. Phys Rev E,2010,82(2):021917.
54 Prodan E, Camelia P, Miller J H. The dielectric response of spherical live cells in suspension: An analytic solution[J]. Biophys J,2008,95(9):4174.
55 Pang X F, Chen S D, Wang Xi H, et al. Influences of electromagnetic energy on bio-energy transport through protein molecules in living systems and its experimental evidence[J]. Int J Molecular Sci,2016,17(8):1130.
56 Mehrdad S, Lynda M T, Oliver S, et al. A new open-source toolbox for estimating the electrical properties of biological tissues in the Terahertz frequency band[J]. J Infrared Millimeter Terahertz Waves,2013,34(9):529.
57 Fujii M. Maximum frequency range limit of multi-pole Debye models of human body tissues[J]. IEEE Microwave Wireless Components Lett,2012,22(2):73.
58 Clegg J, Robinson M P. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties[J]. Phys Medicine Biol,2012,57(19):6227.
59 Gavrilova N D, Novik V K, Vorobyev A V, et al. Negative dielectric permittivity of poly(acrylic acid) pressed pellets[J]. J Non-Crystalline Solids,2016,452:1.
60 Xu L, Liu C, Cao Z, et al. Particle size influence on effective permittivity of particle-gas mixture with particle clusters[J]. Particuo-logy,2013,11(2):216.
61 Hermann W. The static dielectric permittivity of ionic liquids[J]. J Molecular Liquids,2014,192:185.
62 Yvanoff M, Venkataraman J. A feasibility study of tissue characte-rization using LC sensors[J]. IEEE Trans Antennas Propagation,2009,57(4):885.
63 Amooey A A. Improved mixing rules for description of the permittivity of mixtures[J]. J Molecular Liquids,2013, 180(1):31.
64 Nikonorova N A, Balakina M Y, Fominykh O D, et al. Dielectric spectroscopy and molecular modeling of branched methacrylic (co)polymers containing nonlinear optical chromophores[J]. Mater Chem Phys,2016,181:217.
65 Wolf M, Gulich R, Lunkenheimer P, et al. Broadband dielectric spectroscopy on human blood[J]. Biochimica et Biophysica Acta,2011,1810(8):727.
66 Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev E,2010, 81(2):021913.
67 Martellosio A, Pasian M, Bozzi M, et al. 0.5-50 GHz dielectric characterisation of breast cancer tissues[J]. Electron Lett,2015,51(13):974.
68 Peyman A, Holden S J, Watts S, et al. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: In vivo, in vitro and systematic variation with age[J]. Phys Medicine Biol,2007,52(8):2229.
69 Li G. Dielectric properties of rat blood in coagulation process[J]. Appl Mech Mater,2013,373:1007.
70 Raicu V, Saibara T, Enzan H, et al. Dielectric properties of rat liver in vivo: Analysis by modeling hepatocytes in the tissue architecture[J]. Bioelectrochem Bioenergetics,1998,47(2):333.
71 Peon-Fernandez J, Martin-Herrero J, Banerji N, et al. Numerical study of effective permittivity in composite systems[J]. Appl Surf Sci,2004,226(1):78.
72 Zakharov P, Dewarrat F, Caduff A, et al. The effect of blood content on the optical and dielectric skin properties[J]. Physiological Measurement,2011,32(1):131.
73 Caroline B R, George R, Adam P G, et al. Terahertz time domain spectroscopy of human blood[J]. IEEE Trans Terahertz Sci Tech-nol,2013,17(4):774.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed