Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3251-3256    https://doi.org/10.11896/cldb.18110003
  无机非金属及其复合材料 |
金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状
刘康1, 康嘉杰1,2, 岳文1,2, 付志强1,2, 朱丽娜1,2, 佘丁顺1,2
1 中国地质大学(北京)工程技术学院,北京 100083;
2 深钻装备国际联合研究中心,北京 100083
Research Status of Synergistic Effect of Metal-doped DLC Film and LubricatingOil Additives
LIU Kang1, KANG Jiajie1,2, YUE Wen1,2, FU Zhiqiang1,2, ZHU Lina1,2,SHE Dingshun1,2
1 School of Engineering and Technology, China University of Geosciences (Beijing),Beijing 100083;
2 National International Joint Research Center of Deep Geodrilling Equipment,Beijing 100083
下载:  全 文 ( PDF ) ( 2799KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 DLC薄膜由于其优异的性能在机械减摩、耐磨等领域有着良好的应用前景。在汽车发动机的关键零部件表面上沉积DLC薄膜可起到良好的抗摩擦磨损作用,从而提高燃油利用率,起到节能减排、保护环境的作用。当金属掺入DLC薄膜后,利用金属与润滑油介质之间的摩擦化学反应可进一步降低DLC薄膜在油润滑和边界润滑条件下的摩擦系数,提高DLC薄膜的耐磨性能及服役稳定性。然而由于不同掺杂金属的理化性质不同,在相同的润滑环境下金属掺杂的DLC薄膜的摩擦学性能也有着较大的差异。而不同的润滑油添加剂由于其主要成分的差异,会与金属掺杂类DLC发生不同的摩擦化学反应,减摩、耐磨机制、反应产物以及分解产物各不相同。
最常用的两种润滑油添加剂为抗磨抗氧剂二烷基二硫代磷酸锌(ZDDP)和摩擦改进剂二烷基二硫代甲酸钼(MoDTC)。ZDDP以其优异的抗磨损性能著称,而MoDTC的减摩性能优良。鉴于两种添加剂效果显著,用途广泛,二者与金属掺杂DLC薄膜进行适配的摩擦学行为也成为研究焦点。对于掺杂金属,钨可形成WS2化合物,具有良好的润滑性能;钛掺入DLC可以综合改善DLC薄膜的机械摩擦学性能,提高薄膜的表面活性,因而也备受研究者的重视。
MoDTC能减小摩擦系数,但无法改善金属掺杂DLC薄膜的耐磨损性能,这是因为MoDTC的分解产物是MoS2和MoO3,前者可形成减摩的反应膜而后者会导致磨粒磨损;ZDDP往往不会对摩擦系数产生影响,但在一定程度上降低了磨损率,这与其生成垫状磷酸盐反应膜有关。此外,纳米添加剂因其独特的自修复功能在工业领域有着重要的意义,纳米铜颗粒有助于提升金属掺杂类DLC的抗磨损性能,并能获得较稳定的摩擦系数。针对掺杂金属,钛元素可以促进MoDTC的分解,综合提升薄膜的减摩、耐磨性能,而与极压添加剂的复配会导致DLC表面形态恶化,摩擦系数增加。钨元素与ZDDP的复配可能会抑制垫状磷酸膜的形成,降低抗磨效果,而钨含量的增加使MoDTC生成更多MoS2,有助于提升DLC薄膜的摩擦学性能。
本文对国内外金属掺杂DLC与润滑油添加剂协同作用研究进行了综述。总结了不同添加剂和不同掺杂金属对DLC薄膜摩擦学性能的影响,分析了现有研究中存在的问题并展望了研究前景,以期为选择摩擦学性能优异的金属掺杂DLC摩擦副与添加剂的组合提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘康
康嘉杰
岳文
付志强
朱丽娜
佘丁顺
关键词:  金属掺杂  DLC薄膜  润滑油添加剂  协同作用    
Abstract: DLC film has a good application prospect in the field of mechanical anti-friction and wear resistance due to its excellent tribological perfor-mance. Deposited on the surface of key components of the automobile engine, DLC film can play a good role in anti-friction and wear resis-tance, thereby improving fuel utilization, saving energy and reducing pollution and protecting the environment. By doping the metal into the DLC film, the friction coefficient under oil lubrication and boundary lubrication conditions can be further reduced and the wear resistance and service stability of the DLC film can be improved, due to the frictional chemical reaction between the metal and the lubricating oil medium. However, due to the different physical and chemical properties of various doped metals, the tribological properties are also different under the same lubrication environment. Different lubricating oil additives have different tribochemical reactions with metal-doped DLC, as well as the friction-reducing mechanism, reaction products and decomposition products, due to the difference of their main components.
The two most commonly used lubricating oil additives are the anti-wear antioxidant zinc dialkyl dithiophosphate (ZDDP) and the friction modifier molybdenum dialkyldithiocarbamate (MoDTC). ZDDP is known for its excellent wear resistance, while MoDTC has excellent anti-friction properties. Given the obvious effects and wide range of use of the two additives. The tribological behavior of them with metal-doped DLC film has also become the focus of researches. For doped metal, tungsten can form WS2 compounds with good lubricity. The incorporation of titanium into DLC can comprehensively improve the mechanical tribological properties and surface activity of DLC films, thus engaging attention of the researchers.
MoDTC reduces the friction coefficient but shows no improvement in the wear resistance of metal-doped DLC film. This is because MoDTC forms decomposition products MoS2 and MoO3, the former of which forms a friction-reducing reaction film while the latter causes abrasive wear. ZDDP often has no influence on the friction coefficient but reduces the wear rate to some extent, which is related to the formation of a matte phosphate reaction film. In addition, nano-additives are of great significance in the industrial field due to their unique self-repairing properties. Nano-copper particles help to increase the anti-wear properties of metal-doped DLC and achieve a relatively stable friction coefficient. For doped metals, titanium can promote the decomposition of MoDTC, comprehensively improving the anti-friction and wear resistance of the film, while the compounding with the extreme pressure additive will lead to the deterioration of the surface morphology of DLC and increase the friction coefficient. The combination of tungsten and ZDDP may inhibit the formation of phosphoric acid film and reduce the anti-wear effect, while the increase of tungsten content causes MoDTC to generate more MoS2, which helps to improve tribological properties.
The researches on the synergistic effect of metal-doped DLC and lubricant additives worldwide were reviewed in this article. The effects of diffe-rent additives and different doping metals on the tribological properties of DLC films were summarized. Problems in existing researches were analyzed and prospects were pointed out. The research was expected to provide a reference for selecting the combination of metal-doped DLC tribo-pair and additive that has great tribilogical properties.
Key words:  metal-doped    DLC films    lubricant additives    synergistic effect
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金面上项目(41772389;41872183);北京市自然科学基金面上项目(3182032;3172026)
作者简介:  刘康,2017年6月毕业于哈尔滨工业大学,获得工学学士学位。现为中国地质大学(北京)工程技术学院硕士研究生,在康嘉杰副教授的指导下进行研究。目前主要研究领域为固液润滑及DLC涂层。康嘉杰,工学博士,副教授,硕士研究生导师,中国地质大学(北京)工程技术学院机械专业负责人。2013年在中国地质大学(北京)获工学博士学位。迄今发表论文70余篇,其中SCI论文30余篇;授权国家发明专利10项;主持国家自然科学基金面上项目、国家自然科学基金航天先进制造技术研究联合基金培育项目、北京市自然科学基金面上项目等;获教育部技术发明一等奖和国土资源科学技术奖二等奖各1项。主要从事再制造涂层的制备及其失效机制和寿命预测、固体润滑膜层的制备及其摩擦学性能研究。kangjiajie@cugb.edu.cn
引用本文:    
刘康, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺. 金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J]. 材料导报, 2019, 33(19): 3251-3256.
LIU Kang, KANG Jiajie, YUE Wen, FU Zhiqiang, ZHU Lina,SHE Dingshun. Research Status of Synergistic Effect of Metal-doped DLC Film and LubricatingOil Additives. Materials Reports, 2019, 33(19): 3251-3256.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110003  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3251
1 Bai L, Zhang G, Lu Z, et al. Journal of Applied Physics,2011,110(3),33521.2 Shen C M. New Carbon Material, Chemical Industry Press, China,2003(in Chinese).沈曾民.新型碳材料,化学工业出版社,2003.3 Donnet C, Erdemir A. Surface & Coatings Technology,2004,180(3),76.4 Aisenberg S, Chabot R. Journal of Vacuum Science & Technology,1971,42(7),2953.5 Robertson J. Materials Science & Engineering R Reports,2002,37(4),129.6 Zahid R, Masjuki H H, Varman M, et al. Tribology Letters,2015,58(2),32.7 Ren Y S, Hua G R. Tool Engineering,2005,39(11),16(in Chinese).任雨松,花国然.工具技术,2005,39(11),16.8 Paul Peeters, Ruud Jacobs. Internal Combustion Engine & Parts,2012(11),13(in Chinese).Paul Peeters, Ruud Jacobs. 内燃机与配件,2012(11),13.9 Zhang H, Tian J P, Zhou Q M. In: Materials Committee of SAE-China. Shanghai,2014(in Chinese).张浩,田杰平,周巧妹.中国汽车工程学会汽车材料分会学术年会.上海,2014.10 Gao K X, Zhang B, Qiang L. In: the ProSF 2014 Annual Conference. Chongqing,2014,pp.208(in Chinese).高凯雄,张斌,强力.国际表面工程论坛暨第十二届全国表面工程·电镀与精饰年会.重庆,2014,pp.208.11 Spikes H. Tribology Letters,2004,17(3),469.12 Martin J M, Mogne T L, Bilas P, et al. Tribology,2002,40(11),207.13 Zhang Y. The study of preparation and tribological properties of nanometer lubricating oil additive. Master’s Thesis, China University of Mining and Technology, China,2017(in Chinese).张勇.纳米润滑油添加剂的制备与摩擦学性能研究.硕士学位论文,中国矿业大学,2017.14 Austin L, Liskiewicz T, Kolev I, et al. Surface and Interface Analysis,2015,47(7),755.15 Rehan Zahid, Masjuki Bin, Haji Hassan, et al. RSC Advances,2017,7(43),26513.16 Zheng SH X, Ren S M, Pu J B. Chinese Journal of Materials Research,2017,31(1),18(in Chinese).郑韶先,任思明,蒲吉斌.材料研究学报,2017,31(1),18.17 Yue W, Liu C, Fu Z, et al. Tribology Letters,2015,58(2),1.18 Yang L, Neville A, Brown A, et al. Tribology International,2014,70(2),26.19 Sun J, Fu ZQ, Zhang W, et al. Vacuum,2013,94,1. 20 Zhang L X. Study on the mechanism of action of metallic nanometer additives in carbon-based thin film solid-liquid compound lubrication system. Master’s Thesis, Lanzhou Jiaotong University, China,2018(in Chinese). 张立新.金属纳米添加剂在碳基薄膜固-液复合润滑体系中的作用机制的研究.硕士学位论文,兰州交通大学,2018.21 Barros’ Bouchet M I D, Martin J M, Le-Mogne T, et al. Tribology International,2005,38(3),257.22 Kalin M, Roman E, Ožbolt L, et al. Thin Solid Films,2010,518(15),4336.23 Miyake S, Saito T, Yasuda Y, et al. Tribology International,2004,37(9),751.24 Vengudusamy B, Green J H, Lamb G D, et al. Wear,2013,298-299(1),109.25 Yue W, Liu C, Fu Z, et al. Tribology International,2013,62(6),117.26 Yue W, Liu C, Fu Z, et al. Tribology Letters,2015,58(2),31.27 Wang W, Fu Z Q, Wang C B. In: China International Conference on Surface Engineering. Beijing,2010(in Chinese). 王伟,付志强,王成彪.第八届全国表面工程学术会议暨第三届青年表面工程学术论坛.北京,2010.28 Zhang W. Influence of chromium content and friction conditions on friction coefficient and wear resistance of Cr-doped DLC films. Master’s Thesis, China University of Geosciences (Beijing), China,2011(in Chinese). 张伟.铬含量及摩擦条件对掺铬DLC膜摩擦磨损性能的影响.硕士毕业论文,中国地质大学(北京),2011.29 Miki H, Fontaine J. In: Fifth International Conference on Flow Dynamics. Sendai,2008.30 Zhou S, Wang L, Wang S C, et al. Applied Surface Science,2011,257(15),6971.
[1] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[2] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[3] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[4] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[5] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[6] 谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed