Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3435-3443    https://doi.org/10.11896/j.issn.1005-023X.2018.19.018
  金属与金属基复合材料 |
阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展
吴明1,郭紫薇1,谢飞1,王丹1,王义闯2,郭大成3,姜锦涛3
1 辽宁石油化工大学石油天然气工程学院,抚顺 113001;
2 中国石油东北销售分公司,沈阳 110000;
3 中石油辽河油田油气集输公司,盘锦 124010
Corrosion Behavior of Pipeline Steel Under Anions and Sulfate-Reducing Bacteria: a Review
WU Ming1, GUO Ziwei1, XIE Fei1, WANG Dan1, WANG Yichuang2,
GUO Dacheng3, JIANG Jintao3
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001;
2 PetroChina Northeast Marketing Company, Shenyang 110000;
3 PetroChina Liaohe Oilfield Oil and Gas Company, Panjin 124010
下载:  全 文 ( PDF ) ( 2513KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,在油气输送过程中,管线泄漏事故屡次发生,这不仅会威胁管线的安全运行,而且会造成环境的污染和巨大的经济损失。腐蚀是造成管线泄漏事故的主要原因。管线钢被广泛地铺设于土壤或海底等环境中,而这些环境通常具有十分复杂的腐蚀特性,如腐蚀性阴离子、微生物、温度、溶解氧、pH值等多种因素都会对管线钢的腐蚀造成影响。因此,在这些因素的共同作用下,管线钢的腐蚀问题不可避免。其中阴离子和硫酸盐还原菌(Sulfate-reducing bacteria, SRB)是造成管线钢腐蚀最主要的因素。
在管线钢服役环境中,可能存在Cl-、SO42-、CO32-、NO3-、S2-等腐蚀性阴离子,其中Cl-与SO42-最为普遍,相关研究较为充分。有关Cl-对管线钢腐蚀影响规律的研究结果较统一,即随着Cl-浓度的升高,管线钢的腐蚀速率加快。而有关SO42-对管线钢腐蚀的影响规律,目前的观点尚不统一。此外,研究者们在SRB对管线钢腐蚀行为影响方面也做了大量的研究工作。部分研究结果表明,SRB的新陈代谢会加速管线钢腐蚀,还有研究认为SRB会在管线钢表面生成生物膜保护金属,减缓管线钢腐蚀的发生。如今,研究者们意识到管线钢腐蚀的影响因素是多种环境因素共同作用的结果,不能取决于单一环境因素。因此,阴离子与SRB的协同作用对管线钢腐蚀行为的影响成为了目前学术界的研究焦点。
研究发现,当阴离子与SRB共同存在时,阴离子会改变SRB的活性,进而影响管线钢的腐蚀行为。目前研究主要集中于Cl-与SRB共存时,Cl-浓度反映介质中的盐度,盐类可以通过改变微生物水中的渗透压,影响细菌物质运输,从而改变微生物活性。当腐蚀介质中Cl-含量较高时,SRB的生长繁殖会被抑制,大部分SRB细胞脱水死亡,不会发生明显的微生物腐蚀,但在Cl-含量不高且适宜SRB生长的环境中,SRB会与Cl-共同作用,导致金属发生明显的微生物腐蚀。
本文分别综述了阴离子与SRB对管线钢腐蚀行为的影响,总结了SRB与阴离子的协同作用对管线钢腐蚀行为影响的研究现状,提出了当前研究的缺陷与不足并对未来的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴明
郭紫薇
谢飞
王丹
王义闯
郭大成
姜锦涛
关键词:  管线钢  阴离子  硫酸盐还原菌(SRB)  协同作用    
Abstract: In recent years, pipeline leakage accidents occurred frequently in the process of oil and gas transportation, which not only threatens the safe operation of pipelines, but also causes environmental pollution and huge economic losses. Corrosion is the main reason of pipeline leakage. Pipeline steels are widely laid in soils and undersea environments. There are always complex corrosion characteristics in these environments. Corrosive anions, microbes, temperature, dissolved oxygen, pH, and other factors can cause the corrosion of pipeline steels. Therefore, under the combined action of these factors, corrosion of pipeline steels is unavoidable. Among them, anions and sulfate-reducing bacteria (SRB) are the main reason for the corrosion of pipeline steels.
In the service environment of pipeline steel, there may be corrosive anions like Cl-, SO42-, CO32-, NO3-, S2-, etc. Among them, Cl- and SO42- are the most common, and related researches on these two kinds of anions are more adequate. There is a gene-ral consensus among the researchers about the effect of Cl- on the corrosion of pipeline steel. Namely, with the increase of Cl- concentration, the corrosion rate of pipeline steel will be accelerated. However, there is still no unified view regarding to the effect of SO42- on the corrosion of pipeline steel. Besides, great efforts have been put into the research work about the influence of SRB on the corrosion behavior of pipeline steel. Some results indicate that the metabolism of SRB will accelerate the corrosion of pipeline steel, and others suggest that SRB will generate biofilm on the surface of pipeline steel, protecting metal and slowing down the corrosion of pipeline steel. Nowadays, researchers begin to realize that the influencing factors of pipeline steel corrosion are the result of the combination of environmental factors instead of a single environmental factor. Therefore, the synergistic effect of anions and SRB on the corrosion behavior of pipeline steel has become the focus of current research.
It has been found that when anions coexist with SRB, anions can affect the corrosion behavior of pipeline steel by changing the activity of SRB. The current research mainly focuses on the coexistence of Cl- and SRB. The salinity of the medium can be reflected by Cl- concentration, and the salts can alter the microbial activity by changing the osmotic pressure in water containing microorga-nisms, affecting the transport of bacterial substances. When the content of Cl- in the corrosive medium is high, the growth and reproduction of SRB will be inhibited, most of the SRB cells will dehydrate and die, and no obvious microbial corrosion occur. While in the environment where the content of Cl- is not high enough for the growth of SRB, SRB will work together with Cl- to induce significant microbial corrosion of metals.
In this article, the effects of anions and SRB on corrosion behavior of pipeline steels are reviewed. The synergistic effects of SRB and anions on the corrosion behavior of pipeline steel are summarized. The existed defects and deficiencies were analyzed and the further research direction on these issues was also prospected.
Key words:  pipeline steel    anion    sulfate-reducing bacteria (SRB)    synergistic reaction
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG174  
基金资助: :国家自然科学基金(51574147;51604150);辽宁省基本科研项目(L2017LQN016)
作者简介:  男,1961年生,教授,博士研究生导师,主要从事油气管道腐蚀与防护技术的研究 E-mail:wuming0413@163.com; 谢飞:通信作者,男,1983年生,副教授,硕士研究生导师,主要从事油气储运安全技术及管道腐蚀机理的研究 E-mail:xiefei0413@163.com
引用本文:    
吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
WU Ming, GUO Ziwei, XIE Fei, WANG Dan, WANG Yichuang, GUO Dacheng, JIANG Jintao. Corrosion Behavior of Pipeline Steel Under Anions and Sulfate-Reducing Bacteria: a Review. Materials Reports, 2018, 32(19): 3435-3443.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.018  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3435
1 Liu G J, Zhang Y S, Ni Z W, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution[J].Construction and Building Materials,2016,115:1.
2 Niu L B, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel[J].Corrosion Science,2015,96:171.
3 Li H Y, Kang W, Hu J D, et al. Electrochemical corrosion behavior of grade X70 and X80 pipeling steels[J].Transactions of Materials and Heat Treatment,2011,32(10):151(in Chinese).
李红英,康巍,胡继东,等.X70和X80管线钢的电化学腐蚀行为[J].材料热处理学报,2011,32(10):151.
4 Cao X, Xu C C. Effect of chloride on the atmospheric corrosion of stimulated artifact iron in NO3- bearing pollutant environment[J].Acta Matallurgica Sinica,2006,19(1):34.
5 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J].Nature,2015,527(7579):441.
6 Wu T, Yan M, Zeng D, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution[J].Acta Metallurgica Sinica (English Letters),2015,28(1):93.
7 Wu T, Yan M, Zeng D, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J].Journal of Materials Science & Technology,2015,31(4):413.
8 Wu T, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment[J].Corrosion Science,2014,88(16):291.
9 Song B Q, Chen X, Ma G Y, et al. Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution[J].Transactions of Materials and Heat Treatment,2016(37):122(in Chinese).
宋博强,陈旭,马贵阳,等.SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响[J].材料热处理学报,2016(37):122.
10 Cote C, Rosas O, Sztyler M, et al. Corrosion of low carbon steel by microorganisms from the ‘pigging’ operation debris in water injection pipelines[J].Bioelectrochemistry,2014,97(9):97.
11 Chen X, Wang G F, Gao F J. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeling steel under disbonged coatings[J].Corrosion Science,2015,101(6):1.
12 王永红,文杰,康中晖.土壤中阴离子对铅、铝腐蚀的加速试验研究[J].现在传输,2000(2):28.
13 Yang L Q, Zhang C, Xiao J S. Effect of NaCl solution concentration on acoustic emission feature during corrosion of 304 stainless steel[J].Transactions of Materials and Heat Treatment,2014,35(12):184(in Chinese).
杨立清,张超,肖俊生.NaCl溶液浓度对304不锈钢腐蚀过程的声发射特征影响[J].材料热处理学报,2014,35(12):184.
14 Wang K Q, Zhang C. Factor analysis of soil corrosion buried steel gas pipelines[J].Oil & Gas Storage and Transportation,2009,28(6):52(in Chinese).
王凯全,张弛.埋地钢质管道土壤腐蚀因子分析[J].油气储运,2009,28(6):52.
15 Zhang J Z, Xie J F, Song W W, et al. Effect of Cl- concentration on 316L stainless steel pitting corrosion behavior[J].Corrosion & Protection,2012,30(1):71(in Chinese).
张金钟,谢俊峰,宋文文,等.Cl-浓度对316L不锈钢点蚀行为的影响[J].腐蚀与防护,2012,30(1):71.
16 Ma L, Yan Y G, Li X Y. Effect of Cl- concentration on corrosion resistance of CrCoMo stainless steel[J].Corrosion Science and Protection Technology,2005,17(3):172(in Chinese).
马力,阎永贵,李小亚.Cl-浓度对CrCoMo不锈钢耐蚀性能的影响[J].腐蚀科学与防护技术,2005,17(3):172.
17 Du X Y, Qin F, Huang S J, et al. Influence of Cl- concentration in soil on the corrosion rate[J].Guangdong Chemical Industry,2011,38(9):41(in Chinese).
杜新燕,秦风,黄淑菊,等.氯离子浓度对土壤腐蚀速率的影响[J].广东化工,2011,38(9):41.
18 Song Y Q, Du C W, Zhang X, et al. Influence of Cl- concentration on crevice corrosion of X70 pipeline steel[J].Acta Metallurgica Sinica,2009,45(9):1130(in Chinese).
宋义全,杜翠微,张新,等.Cl-浓度对X70管线钢缝隙腐蚀的影响[J].金属学报,2009,45(9):1130.
19 朱日章.金属腐蚀学[M].北京:冶金工业出版社,1993.
20 Lu G C, Xu C C, Cheng H D. Critical chloride concentration of stress corrosion cracking for 304 stainless steel[J].Chemical Industry and Engineering Progress,2008,27(8):1284(in Chinese).
吕国诚,许淳淳,程海东.304不锈钢应力腐蚀的临界氯离子浓度[J].化工进展,2008,27(8):1284.
21 Xu Q F, Gao K W, Pang X L, et al. Effects of Cl-、SO42- and CO32- ions on corrosion resistance of carbon steel in groundwater solution[J].Transactions of Materials and Heat Treatment,2015,36(7):166(in Chinese).
徐秋发,高克玮,庞晓露,等.地下水溶液中Cl-、SO42-和CO32-离子对碳钢腐蚀性能的影响[J].材料热处理学报,2015,36(7):166.
22 Zhang Z G, Wu M, Chen X. Effect of aggressive anions on corrosion behavior of A3 steel[J].Corrosion & Protection,2011,32(8):609(in Chinese).
张治国,吴明,陈旭.侵蚀性阴离子对A3钢腐蚀电化学行为的影响[J].腐蚀与防护,2011,32(8):609.
23 Liu W X, Sun C. Effects of different cathodic ions on the corrosion of carbon steel in soils[J].Total Corrosion Control,2006,20(6):10(in Chinese).
刘文霞,孙成.土壤中阴离子对碳钢腐蚀的影响[J].全面腐蚀控制,2006,20(6):10.
24 Gong M, Jiang W, Jin Y Z, et al. Influence of CO32- on pitting corrosion behavior for 2205DSS in bittern[J].Corrosion Science and Protection Technology,2008,20(2):91(in Chinese).
龚敏,蒋伟,金永中,等.CO32-对2205DSS在卤盐中的孔蚀影响[J].腐蚀科学与防护技术,2008,20(2):91.
25 Wu Y H, Luo S X, Gou H. Effects of CO32- ions on corrosion behavior of Q235 steel in soil[J].Journal of Xinyang Normal University(Natural Science Edition),2008,21(1):122(in Chinese).
伍远辉,罗宿星,勾华.CO32-对Q235钢在土壤中腐蚀行为的影响[J].信阳师范学院学报(自然科学版),2008,21(1):122.
26 Li S M, Xin C S, Liu J H, et al. Effect of different anion environments on corrosion behavior of 40CrNi2Si2MoVA steel[J].Transactions of Materials and Heat Treatment,2013,34(10):146(in Chinese).
李松梅,辛长胜,刘建华,等.不同阴离子对40CrNi2Si2MoVA钢腐蚀行为的影响[J].材料热处理学报,2013,34(10):146.
27 Deng B, Jiang Y, Liao J, et al. Dependence of critical pitting temperature on the concentration of sulphate ion in chloride-containing solutions[J].Applied Surface Science,2007,253(18):7369.
28 Xie F, Wu M, Chen X, et al. Effects of SO42- on corrosion behavior of X80 pipeline steel in simulated Ku’erle soil solution[J].Journal of Central South University(Science and Technology),2013,44(1):424(in Chinese).
谢飞,吴明,陈旭,等.SO42-对X80管线钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J].中南大学学报(自然科学版),2013,44(1):424.
29 Liang P, Du C W, Li X G. Effect of SO42- on pitting corrosion behavior of X80 pipeline steel in NaHCO3 solution containing Cl-[J].Corrosion & Protection,2010,31(5):362(in Chinese).
梁平,杜翠薇,李晓刚.SO42-对X80管线钢在含Cl-的NaHCO3溶液中点蚀行为的影响[J].腐蚀与防护,2010,31(5):362.
30 Liao J X, Jiang Y M, Wu W W, et al. Influence of SO42- in aqueous solution containing Cl- on the critical pitting corrosion temperature of 316 stainless steel[J].Acta Metallurgica Sinica,2006,42(11):1187(in Chinese).
廖家兴,蒋益明,吴玮巍,等.含Cl-溶液中SO42-对316不锈钢临界点蚀温度的影响[J].金属学报,2006,42(11):1187.
31 Shi Z Q, Zhang X Y, Wang Y F, et al. Effects of SO42- on pitting corrosion behavior of X100 pipeline steel in alkaline solution[J].Journal of China University of Petroleum(Science and Technology),2016,40(1):128(in Chinese).
石志强,张秀云,王彦芳,等.SO42-对X100管线钢在盐渍性溶液中点蚀行为的影响[J].中国石油大学学报(自然科学版),2016,40(1):128.
32 Zhang S Y, Liang P, Hu C X, et al. Effect of anions in Kolar soil on corrosion behavior of X80 pipeline steel[J].Corrosion & Protection,2014,35(1):14(in Chinese).
张淑雁,梁平,胡传顺,等.库尔勒土壤中阴离子对X80管线钢腐蚀行为的影响[J].腐蚀与防护,2014,35(1):14.
33 Xu C C, Chi L, Hu G. Electrochemiacal behavior of X70 pipeline steel in carbonate-bicarbonate solution[J].Corrosion Science and Protection Technology,2004,16(5):268(in Chinese).
许淳淳,池琳,胡钢.X70管线钢在CO32-/HCO3-溶液中的电化学行为研究[J].腐蚀科学与防护技术,2004,16(5):268.
34 Zong Y, Xie F, Wu M, et al. Research progress in influencing factors of corrosion by sulfate-reducing bacteria and corresponding antisepsis techniques[J].Surface Technology,2016,45(3):24(in Chinese).
宗月,谢飞,吴明,等.硫酸盐还原菌腐蚀影响因素及防腐技术的研究进展[J].表面技术,2016,45(3):24.
35 Li Y X, Gong A J. Progress in studies on microbiologically inf-luenced corrosion by sulfate-reducing bacteria[J].Total Corrosion Control,2005,19(1):30(in Chinese).
李迎霞,弓爱君.硫酸盐还原菌微生物腐蚀研究进展[J].全面腐蚀控制,2005,19(1):30.
36 Miranda E, Bethencourt M, Botana F J, et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator[J].Corrosion Science,2006,48(9):2417.
37 Alabbas F M, Williamson C, Bhola S M, et al. Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field[J].Journal of Materials Engineering and Performance,2013,22(11):3517.
38 Javaherdashti R. Impact of sulphate-reducing bacteria on the performance of engineering materials[J].Applied Microbiology and Biotechnology,2011,91(6):1507.
39 Niu T, Yang J W, Wang L. Pitting mechanism of X60 pipeline steel under the action of SRB[J].Corrosion & Protection,2014,35(10):1060(in Chinese).
牛涛,杨建伟,王林.硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制[J].腐蚀与防护,2014,35(10):1060.
40 Miranda E, Bethencourt M, Botana F J, et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium desulfovibrio capillatus isolated from a Mexican oil field separator[J].Corrosion Science,2006,48(9):2417.
41 Li F S, An M Z, Liu G Z, et al. Roles of sulfur-containing metabolites by SRB in accelerating corrosion of carbon steel[J].Chinese Journal of Inorganic Chemistry,2009,25(1):13(in Chinese).
李付绍,安茂忠,刘光洲,等.硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用[J].无机化学学报,2009,25(1):13.
42 Yang Z Q, Zhou S Q, Liu G Z, et al. Corrosion behaviors of Q235 steel in seawater containing sulfate-reducing bacteria[J].Journal of South China University of Technology(Natural Science Edition),2009,37(10):135(in Chinese).
杨志泉,周少奇,刘光洲,等.Q235钢在含硫酸盐还原菌海水中的腐蚀行为[J].华南理工大学学报(自然科学版),2009,37(10):135.
43 Sun C, Han E H, Wang X. Effects of SRB on corrosion of carbon steel in seamud[J].Corrosion Science and Protection Technology,2003,15(2):104(in Chinese).
孙成,韩恩厚,王旭.海泥中硫酸盐还原菌对碳钢腐蚀行为的影响[J].腐蚀科学与防护技术,2003,15(2):104.
44 Ge L, Wu M, Xie F, et al. Influence of sulfate reducing bacteria growth process on corrosion behavior of X70 steel[J].Materials for Mechanical Engineering,2016,40(8):94(in Chinese).
葛岚,吴明,谢飞,等.硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响[J].机械工程材料,2016,40(8):94.
45 Zhu L X, Gong Z, Wu T Q, et al. Effects of sulfate-reducing bacteria on corrosion behavior of X100 pipeline steel in red soil[J].Corrosion Research,2015,29(9):64(in Chinese).
祝烺贤,龚喆,吴堂清,等.硫酸盐还原菌对红壤中X100管线钢腐蚀行为的影响[J].腐蚀研究,2015,29(9):64.
46 Yang J X. Influence of sulphate reducing bacteria on crevice corrosion behavior of Q235 steel[J].Journal of Chinese Society for Corrosion and Protection,2012,32(1):54(in Chinese).
杨佳星.硫酸盐还原菌Q235钢缝隙腐蚀行为影响[J].中国腐蚀与防护学报,2012,32(1):54.
47 Liang H C, Huang N B, Wang H. Corrosion behavior of 09Cr2AlMoRE steel in seawater with sulfate-reducing bacteria[J].Journal of Dalian Maritime University,2010,36(1):73(in Chinese).
梁浩成,黄乃宝,王华.海水中硫酸盐还原菌对09Cr2AlMoRE钢的腐蚀行为[J].大连海事大学学报,2010,36(1):73.
48 Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil pipeline[J].Engineering Failure Analysis,2007,14(1):250.
49 Eslami A, Fang B, Kania R. Stress corrosion cracking initiation under the disbanded coating of pipeline steel in near-neutral pH environment[J].Corrosion Science,2010,52(11):3750.
50 Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking[J].International Journal of Hydrogen Energy,2001,26(5):515.
51 曾峰,刘向荣,白金刚.硫酸盐还原菌对16Mn钢在海泥中应力腐蚀开裂敏感性的影响[J].科技信息:科学教研,2007(13):280.
52 Wang D, Xie F, Wu M. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel[J].Transactions of Mate-rials and Heat Treatment,2016,37(5):198(in Chinese).
王丹,谢飞,吴明.硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响[J].材料热处理学报,2016,37(5):198.
53 Javaherdashtia R, Panter C. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria[J].International Biodeterioration & Biodegragradation,2006,58(1):27.
54 Xu C M, Luo J H, Zhou Y, et al. Effect of SRB on stress corrosion cracking of X100 pipeline steel in northwest saline soil[J].Transactions of Materials and Heat Treatment,2016,37(5):82(in Chinese).
胥聪敏,罗金恒,周勇,等.SRB对X100钢在西北盐渍土壤中应力腐蚀开裂行为行为的影响[J].材料热处理学报,2016,37(5):82.
55 Blight K R, Ralph D E. Effect of ionic strength on iron oxidation with batch cultures of chemolithotrophic bacteria[J].Hydrometallurgy,2004,73(3-4):325.
56 Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion[J].Petrochemical Industry Application,2015,34(1):13(in Chinese).
孟章进,吴伟林,祁建杭,等.井筒环境因素对SRB生长及腐蚀影响分析[J].石油化工应用,2015,34(1):13.
57 Zhang X L, Chen Z X, Liu H H, et al. Effect of environment factors on the growth of sulfate-reducing bacteria[J].Journal of Chinese Society for Corrosion and Protection,2000,20(4):224(in Chinese).
张小里,陈志昕,刘海洪,等.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224.
58 Wu W F, Liu B, Li H J, et al. Effect of pH and salinity on sulfate reduction by microorganism[J].Chinese Journal of Environmental Engineering,2011,5(11):2527(in Chinese).
吴文菲,刘波,李红军,等.pH、盐度对微生物还原硫酸盐的影响研究[J].环境工程学报,2011,5(11):2527.
59 Sun C, Han E H. Effects of SRB on corrosion of 1Cr18Ni9Ti stainless steel in soils of Cl-[J].Journal of Chinese Society for Corrosion and Protection,2003,23(1):46(in Chinese).
孙成,韩恩厚.土壤中SRB及Cl-对1Cr18Ni9T不锈钢腐蚀的相互影响[J].中国腐蚀与防护学报,2003,23(1):46.
60 Sun C, Han E H, Zhang S Q, et al. Effects of sulfate reducing bacteria on corrosion of 1Cr13 stainless steel in soils of Cl-[J].Chinese Journal of Materials Research,2003,17(2):192(in Chinese).
孙成,韩恩厚,张淑泉,等.土壤中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响[J].材料研究学报,2003,17(2):192.
61 Xin Z, Yu Y, Wang Y C, et al. Effect of chloride concentration in sulphate-reducing bacteria medium on corrosion behavior of 316L stainless steel[J].Materials Protection,2014,47(5):57(in Chinese).
辛征,于勇,王元春,等.Cl-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响[J].材料保护,2014,47(5):57.
62 Zhou S F, Yin X F, Zhou W G, et al. Effects of SRB on corrosion of Q235 steel in Cl- containing soils[J].Corrosion Science and Protection Technology,2004,16(4):199(in Chinese).
周书峰,尹秀峰,周卫国,等.在不同Cl-含量土壤中硫酸盐还原菌对Q235钢腐蚀的影响[J].腐蚀科学与防护技术,2004,16(4):199.
63 Zheng M L. Effect of anions in soil on microbial corrosion of X70 steel[J].Shandong Industria Technology,2015(7):224(in Chinese).
郑美露.土壤中阴离子对X70钢微生物腐蚀的影响[J].山东工业技术,2015(7):224.
64 Liu W X, Sun C. Effects of sulfate reducing bacteria on corrosion of carbon steel in Cl- and SO42- soils[J].Corrosion & Protection,2008,29(11):661(in Chinese).
刘文霞,孙成.Cl-与SO42-土壤中硫酸盐还原菌对碳钢腐蚀的影响[J].腐蚀与防护,2008,29(11):661.
[1] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[2] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[3] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[4] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[5] 刘光志,李伟,费又庆. 苎麻纤维增强原位阴离子聚合尼龙6复合材料的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 213-218.
[6] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[7] 赵朋成, 刘振伟, 王璐璐, 高世一, 王振民. X65管线钢管闪光对焊工艺参数对焊接接头力学性能和缺陷的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 87-91.
[8] 谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed