Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 69-77    https://doi.org/10.11896/j.issn.1005-023X.2017.013.009
  材料综述 |
X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*
谢飞1, 李雪1, 高四方2, 王丹1, 吴明1
1 辽宁石油化工大学石油天然气工程学院,抚顺 113001;
2 中油抚顺石化设备检测监理研究中心,抚顺 113008
Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Soil Environment Containing Sulfate-reducing Bacteria: An Overview
XIE Fei1, LI Xue1, GAO Sifang2, WANG Dan1, WU Ming1
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001;
2 Fushun Petrochemical Equipment Inspection & Testing, Monitoring and Research Center of China Nation Petroleum Corporation, Fushun 113008
下载:  全 文 ( PDF ) ( 2934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 X80管线钢因具有高强度、高韧性、抗脆断等性能,已成为现代油气运输中应用最为广泛的钢材之一。X80管线钢在埋地土壤环境中不可避免地受到应力和SRB(Sulfate-reducing bacteria)的共同作用,近年来有关X80管线钢在含SRB的土壤环境中的应力腐蚀开裂已成为一个研究重点。综述了应力腐蚀开裂和SRB腐蚀的影响因素,总结了关于应力和SRB协同作用对X80管线钢腐蚀行为影响的研究现状,分析了现行研究的缺陷和不足,并针对这些问题对今后的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢飞
李雪
高四方
王丹
吴明
关键词:  管线钢  应力腐蚀  硫酸盐还原菌  协同作用    
Abstract: X80 pipeline steel is widely used in oil and natural gas pipeline transportation field due to its high strength, high toughness and excellent corrosion-resistance. The buried X80 pipeline steel is unavoidably affected by the synergistic effect of stress and SRB (sulfate-reducing bacteria), so the stress corrosion cracking behavior of X80 pipeline steel in the soil environment containing SRB has been studied as an academic research focus. In this paper, the influence factors on stress corrosion cracking and SRB corrosion are reviewed. The synergistic effect of stress and SRB on the corrosion behavior of X80 pipeline steel is summarized. The existed problems are analyzed and the further direction of research is also prospected.
Key words:  pipeline    stress corrosion    sulfate-reducing bacteria    synergistic effect
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG174  
基金资助: *国家自然科学基金(51604150;51574147);辽宁省博士启动基金(201601324);辽宁石油化工大学引进人才科研启动基金(2016XJJ-032)
通讯作者:  王丹:通讯作者,女,1984年生,博士,主要研究方向为微生物腐蚀机理 E-mail:wd841015@163.com   
作者简介:  谢飞:男,1983年生,博士,副教授,硕士研究生导师,主要研究方向为油气管道腐蚀与防护技术 E-mail: 370716026@qq.com
引用本文:    
谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
XIE Fei, LI Xue, GAO Sifang, WANG Dan, WU Ming. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Soil Environment Containing Sulfate-reducing Bacteria: An Overview. Materials Reports, 2017, 31(13): 69-77.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.009  或          https://www.mater-rep.com/CN/Y2017/V31/I13/69
1 Fan Xiaoyong, Chen Bi, Hu Jun. Research on the corrosion beha-vior of X80 steel with heat treatment in simulative soil solution[J]. Corros Res,2015(2):71(in Chinese).
范晓勇, 陈碧, 胡军. 热处理后的X80管线钢在土壤模拟液中的腐蚀行为研究[J]. 全面腐蚀控制,2015(2):71.
2 Xiao Guoqing, Feng Mingyang, Zhang Huabing, et al. Study on failure assessment for X80 high-grade pipeline with corrosion defects[J]. J Safety Sci Technol,2015,11(6):126(in Chinese).
肖国清, 冯明洋, 张华兵, 等. 含腐蚀缺陷的X80高钢级管道失效评估研究[J]. 中国安全生产科学技术,2015,11(6):126.
3 Zhao Bo, Shou Binan, Wang Hankui, et al. Research progress on the stress corrosion cracking of buried pipeline steel in soil environment[J]. China Special Equipment Safety,2014(1):63(in Chinese).
赵博, 寿比南, 王汉奎, 等. 埋地管线钢在土壤环境中的埋地腐蚀与研究进展[J].中国特种设备安全,2014(1):63.
4 Fan L, Du C, Liu Z, et al. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate[J]. Int J Minerals Metall Mater,2013,20(7):645.
5 Kong D, Wu Y, Dan L. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J Iron Steel Res Int,2013,20(1):40.
6 Wang Huixin. Corrosion behavior of X80 pipeline steel in Shanshan simulated soil solution[J]. Corros Protection Petrochem Ind,2013,30(4):8(in Chinese).
王会新. X80钢在鄯善土壤模拟溶液中的腐蚀行为[J]. 石油化工腐蚀与防护,2013,30(4):8.
7 Wang Ying, Yu Hongying, Cheng Yuan, et al. Corrosion behavior of X80 steel in simulated solution of Yichuan soil[J]. Mater Sci Technol,2013,21(3):129(in Chinese).
王莹, 俞宏英, 程远, 等. X80钢在伊川土壤模拟溶液中的腐蚀行为[J]. 材料科学与工艺,2013,21(3):129.
8 Jiang Jinyu, Wu Xiang. Calculation of the soil corrosion rate and anti-corrosion measures of buried steel pipeline[J]. Pipeline Technique Equipment,2013(5):49(in Chinese).
蒋金玉, 吴祥. 埋地钢管的土壤腐蚀速率计算及防腐措施[J]. 管道技术与设备,2013(5):49.
9 Fan Lin, Li Xiaogang, Du Cuiwei, et al. Current research on the corrosion fatigue crack propagation rate of pipeline steels[J]. Corros Protection,2012,33(11):990(in Chinese).
范林, 李晓刚, 杜翠薇, 等. 管线钢腐蚀疲劳裂纹扩展的研究现状[J]. 腐蚀与防护,2012,33(11):990.
10 Oldfield J W, Todd B. Ambient-temperature stress corrosion crac-king of austenitic stainless steel in swimming pools[J]. Mater Performance,1990,29:57.
11 Alabbas F M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int Biodeterioration Biodegradation,2013,78:34.
12 Zhu Yongyan. The effects of sulfate reducing bacteria and polarization potential on the stress corrosion cracking sensitivity of 16Mn and API X56 steel in sea-mud[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2007(in Chinese).
朱永艳. 硫酸盐还原菌和极化电位对海洋结构用钢在海泥中的应力腐蚀开裂敏感性的影响[D]. 青岛:中国科学院海洋研究所,2007.
13 Wu T, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros Sci,2014,88:291.
14 Wu T, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J]. J Mater Sci Technol,2015,31(4):413.
15 Wu T, Yan M, Zeng D, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution[J]. Acta Metall Sin (English Letters),2015,28(1):93.
16 Song Boqiang, Chen Xu, et al. Effect of SRB on SCC behavior of X70 pipeline steel and its weld joint in near-neutral pH solution[J]. Trans Mater Heat Treatment,2016,37(4):122(in Chinese).
宋博强, 陈旭,等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响[J]. 材料热处理学报,2016,37(4):122.
17 Wu T, Xu J, Yan M, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros Sci,2014,83:38.
18 Wang Dan, Xie Fei, Wu Ming, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel[J]. Trans Mater Heat Treatment,2016,37(5):198(in Chinese).
王丹, 谢飞, 吴明, 等. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响[J]. 材料热处理学报,2016,37(5):198.
19 Bai Zhenquan, Li Helin, Liu Daoxin, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment[J]. Mater Protection,2003,36(4):32(in Chinese).
白真权, 李鹤林, 刘道新, 等. 模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究[J]. 材料保护,2003,36(4):32.
20 Zhang Liang, Li Xiaogang, Du Cuiwei, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels[J]. Corros Sci Protection Technol,2009,21(1):62(in Chinese).
张亮, 李晓刚, 杜翠薇, 等. 管线钢应力腐蚀影响因素的研究进展[J]. 腐蚀科学与防护技术,2009,21(1):62.
21 Liu X, Frankel G S. Effects of compressive stress on localized corrosion in AA2024-T3[J]. Corros Sci,2006,48(10):3309.
22 Lin Mao, Liu Zhiyi, Chen Lai, et al. Effect of pre-stretching on corrosion behavior of Al-Cu-Mg alloy[J]. Mater Sci Eng Powder Me-tall,2015,20(1):72(in Chinese).
林茂, 刘志义, 陈来, 等. 预拉伸变形对Al-Cu-Mg合金腐蚀性能的影响[J]. 粉末冶金材料科学与工程,2015,20(1):72.
23 Cheng Yuan, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J]. J Mater Eng,2013(3):77(in Chinese).
程远,等. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程,2013(3):77.
24 Parkins R N, Blanchard W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH[J]. Corrosion,1994,50(5):394.
25 Guo Hao, Li Guangfu, Cai Xun, et al. Stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH solutions at different temperatures[J]. Acta Metall Sin,2004,40(9):967(in Chinese).
郭浩, 李光福, 蔡珣, 等. X70管线钢在不同温度近中性pH溶液中的应力腐蚀破裂行为[J]. 金属学报,2004,40(9):967.
26 Wang Shengrong, Du Cuiwei, et al. Field experimental study on stress corrosion cracking behavior of Q235 and X70 steels in Singapore soil[J]. J Mechan Eng,2015,51(12):30(in Chinese).
王胜荣, 杜翠薇,等. Q235与X70钢在新加坡土壤中的应力腐蚀行为现场试验研究[J]. 机械工程学报,2015,51(12):30.
27 Liu Z, Du C, Zhang X, et al. Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. Acta Metall Sin (English Letters),2013,26(4):489.
28 Dong Jin. Main influence factors to sour corrosion resistance of pipeline steel and test method[J]. Welded Pipe Tube,2013,36(11):31(in Chinese).
董瑾. 管线钢耐酸性腐蚀的主要影响因素及测试方法[J]. 焊管,2013,36(11):31.
29 刘永辉, 张佩芬.金属腐蚀学原理[M]. 第2 版. 北京: 航空工业出版社,1993.
30 Chen W, King F, Vokes E. Characteristics of near-neutral pH stress corrosion cracks in an X65 pipeline[J]. Corrosion,2002,58(3):267.
31 Beavers J A, Harle B A. Mechanisms of high-pH and near-neutral pH SCC of underground pipelines[J]. J Offshore Mechan Arctic Eng,2001,123(3):147.
32 Wang Z F, Atrens A. Initiation of stress corrosion cracking for pipeline steels in a carbonate-bicarbonate solution[J]. Metall Mater Trans A,1996,27(9):2686.
33 Xu Congmin, Luo Jinheng, Yao Chunfa, et al. Stress corrosion cracking behavior of X100 pipeline steel in saline-alkali soil with the action of SRB[J]. Mater Sci Technol,2016,24(2):68(in Chinese).
胥聪敏, 罗金恒, 姚春发, 等. X100管线钢在含SRB的盐碱土壤溶液中的SCC行为[J]. 材料科学与工艺,2016,24(2):68.
34 Zhao Licheng, Sun Cheng, Zhang Fubao, et al. Kinetics analysis of naphthenic acid corrosion in atmospheric and vacuum equipment[J]. Corros Sci Protection Technol,2007,19(1):27(in Chinese).
赵力成, 孙成, 张付宝, 等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术,2007,19(1):27.
35 Zehnder A J B. Biology of anaerobic microorganisms[M]. New York: John Wiley and Sons Inc.,1988.
36 Iverson W P. Research on the mechanisms of anaerobic corrosion[J]. Int Biodeterioration Biodegradation,2001,47(2):63.
37 Fang Shijie, Min Zhiyu, Liu Yaohui. Influence of SRB for corrosion of AZ91 magnesium alloy with MAO[J]. J Chongqing University of Technology:Nat Sci,2010,24(4):49(in Chinese).
方世杰, 闵志宇, 刘耀辉. SRB对微弧氧化AZ91镁合金的腐蚀影响[J]. 重庆理工大学学报:自然科学版,2010,24(4):49.
38 Yang Jiadong, Xu Fengling, Hou Jian, et al. Research progress in microbial corrosion of metal materials and its prevention[J]. Equipment Environmental Eng,2015,12(1):59(in Chinese).
杨家东, 许凤玲, 侯健, 等. 金属材料的微生物腐蚀与防护研究进展[J]. 装备环境工程,2015,12(1):59.
39 Iverson W P. Microbial corrosion of metals[J]. Adv Appl Micro-biol,1987,32(1):1.
40 Von Wolzogen Kühr C A H, Vander Vlugt L S. Aerobic and anaerobic iron corrosion in water mains[J]. Am Water Works Association,1953,45(1):33.
41 Postgate J R. The sulphate reducing bacteria and edition[M]. Cambridge: Cambridge University Press,1984.
42 Fan Youjun, Pi Zhenbang, et al. Microbial corrosion and its research methods[J]. Mater Protection,2001,34(5):18(in Chinese).
樊友军, 皮振邦, 等. 微生物腐蚀的作用机制与研究方法现状[J]. 材料保护,2001,34(5):18.
43 Duan J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochimica Acta,2008,54(1):22.
44 Dexter S C, Sullivan J D, Williams J, et al. Influence of substrate wettability on the attachment of marine bacteria to various surfaces[J]. Appl Microbiol,1975,30(2):298.
45 Wingender J, Neu T R, Flemming H C. Microbial extracellular polymeric substances: Characterization, structure, and function[M]. Berlin: Springer Science & Business Media,1999.
46 Wang Qingfei, Song Shizhe. Progress in marine biologically influen-ced corrosion study[J]. J Chinese Soc Corros Protection,2009,22(3):184(in Chinese).
王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展[J]. 中国腐蚀与防护学报,2009,22(3):184.
47 Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking[J]. Eng Failure Anal,2013,28:149.
48 Ye Qin, Li Kejuan, Guo Peipei, et al. Evolution of SRB biofilm and its influence on corrosion of Q235 carbon steel in oilfield sewage[J]. Corros Sci Protection Technol,2013,25(3):195(in Chinese).
叶琴, 李克娟, 郭佩佩, 等. 油田污水中碳钢表面生物膜生长规律及腐蚀电化学行为[J]. 腐蚀科学与防护技术,2013,25(3):195.
49 Tang Heqing. The effect of free oxygen in microbiologically influenced corrosion[J]. Mater Protection,1992,25(4):23(in Chinese).
唐和清. 微生物腐蚀中游离氧的作用[J]. 材料保护,1992,25(4):23.
50 Hardy J A, Bown J L. The corrosion of mild steel by biogenic sulfide films exposed to air[J]. Corrosion,1984,40(12):650.
51 Liu Yuxiu, Liu Guichang, Zhan Guangshen, et al. Progress in research on microbiologically influenced corrosion by sulfate-reducing bacteria[J]. Corros Protection,2002,23(6):245(in Chinese).
刘玉秀, 刘贵昌, 战广深,等. 硫酸盐还原菌引起的微生物腐蚀的研究进展[J]. 腐蚀与防护,2002,23(6):245.
52 Zhang Xiaoli, Liu Haihong, Chen Kaixun, et al. The study of gro-wing regulation of sulfate-reducing bacteria[J]. J Northwest University:Nat Sci Ed,1999,29(5):397(in Chinese).
张小里, 刘海洪, 陈开勋, 等. 硫酸盐还原菌生长规律的研究[J]. 西北大学学报:自然科学版,1999,29(5):397.
53 Yu Dunyi, Peng Fangming, Zheng Jiashe. A study on corrosion of casing induced by sulfate-reducing bacteria in oil field[J]. Acta Petrolei Sin,1996,17(1):154(in Chinese).
俞敦义, 彭芳明, 郑家燊. 硫酸盐还原菌对油田套管腐蚀的研究[J]. 石油学报,1996,17(1):154.
54 Moosavi A N, et al. Effect of sulfate-reducing bacteria activity on performance of scarified anodes[J]. Corrosion,1998,10(25):413.
55 Chen Ye. Study on influence factors and control methods of corrosion caused by sulfate reducing bacteria[D]. Dalian: Dalian University of Technology,2004(in Chinese).
陈野. 硫酸盐还原菌腐蚀的影响因素及其防治方法[D]. 大连:大连理工大学,2004.
56 Zeng Rongchang, et al. Study on corrosion of a medical Mg-Li-Ca alloy with calcium phosphate coating[J]. J Chongqing University of Technology:Nat Sci,2010,24(10):34(in Chinese).
曾荣昌, 等. 医用Mg-Li-Ca合金表面Ca-P涂层腐蚀研究[J]. 重庆理工大学学报:自然科学版,2010,24(10):34.
[1] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[2] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[3] 高怡萱, 潘杰, 李焰, 张建, 李阳. 超临界二氧化碳输送管道内腐蚀研究进展[J]. 材料导报, 2024, 38(12): 22120216-8.
[4] 叶慧, 沈天成, 陈远志, 徐进. 太阳能电池用球形银颗粒的液相法制备研究[J]. 材料导报, 2024, 38(1): 22050236-5.
[5] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[6] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[7] 唐昭敏, 田维君. pH响应型纳米药物用于化疗-光热协同治疗肿瘤[J]. 材料导报, 2022, 36(3): 21120187-6.
[8] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[9] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[10] 齐季, 谢飞, 王丹, 赵杨. 微生物与磁场作用下管线钢的腐蚀行为研究进展[J]. 材料导报, 2021, 35(7): 7169-7175.
[11] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[12] 贺春花, 李红萍, 叶凌英, 刘胜胆, 唐建国. 晶粒组织对7150铝合金抗腐蚀性能的影响[J]. 材料导报, 2021, 35(22): 22109-22114.
[13] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[14] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[15] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed