Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 69-77    https://doi.org/10.11896/j.issn.1005-023X.2017.013.009
  材料综述 |
X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*
谢飞1, 李雪1, 高四方2, 王丹1, 吴明1
1 辽宁石油化工大学石油天然气工程学院,抚顺 113001;
2 中油抚顺石化设备检测监理研究中心,抚顺 113008
Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Soil Environment Containing Sulfate-reducing Bacteria: An Overview
XIE Fei1, LI Xue1, GAO Sifang2, WANG Dan1, WU Ming1
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001;
2 Fushun Petrochemical Equipment Inspection & Testing, Monitoring and Research Center of China Nation Petroleum Corporation, Fushun 113008
下载:  全 文 ( PDF ) ( 2934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 X80管线钢因具有高强度、高韧性、抗脆断等性能,已成为现代油气运输中应用最为广泛的钢材之一。X80管线钢在埋地土壤环境中不可避免地受到应力和SRB(Sulfate-reducing bacteria)的共同作用,近年来有关X80管线钢在含SRB的土壤环境中的应力腐蚀开裂已成为一个研究重点。综述了应力腐蚀开裂和SRB腐蚀的影响因素,总结了关于应力和SRB协同作用对X80管线钢腐蚀行为影响的研究现状,分析了现行研究的缺陷和不足,并针对这些问题对今后的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢飞
李雪
高四方
王丹
吴明
关键词:  管线钢  应力腐蚀  硫酸盐还原菌  协同作用    
Abstract: X80 pipeline steel is widely used in oil and natural gas pipeline transportation field due to its high strength, high toughness and excellent corrosion-resistance. The buried X80 pipeline steel is unavoidably affected by the synergistic effect of stress and SRB (sulfate-reducing bacteria), so the stress corrosion cracking behavior of X80 pipeline steel in the soil environment containing SRB has been studied as an academic research focus. In this paper, the influence factors on stress corrosion cracking and SRB corrosion are reviewed. The synergistic effect of stress and SRB on the corrosion behavior of X80 pipeline steel is summarized. The existed problems are analyzed and the further direction of research is also prospected.
Key words:  pipeline    stress corrosion    sulfate-reducing bacteria    synergistic effect
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG174  
基金资助: *国家自然科学基金(51604150;51574147);辽宁省博士启动基金(201601324);辽宁石油化工大学引进人才科研启动基金(2016XJJ-032)
通讯作者:  王丹:通讯作者,女,1984年生,博士,主要研究方向为微生物腐蚀机理 E-mail:wd841015@163.com   
作者简介:  谢飞:男,1983年生,博士,副教授,硕士研究生导师,主要研究方向为油气管道腐蚀与防护技术 E-mail: 370716026@qq.com
引用本文:    
谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
XIE Fei, LI Xue, GAO Sifang, WANG Dan, WU Ming. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Soil Environment Containing Sulfate-reducing Bacteria: An Overview. Materials Reports, 2017, 31(13): 69-77.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.009  或          http://www.mater-rep.com/CN/Y2017/V31/I13/69
1 Fan Xiaoyong, Chen Bi, Hu Jun. Research on the corrosion beha-vior of X80 steel with heat treatment in simulative soil solution[J]. Corros Res,2015(2):71(in Chinese).
范晓勇, 陈碧, 胡军. 热处理后的X80管线钢在土壤模拟液中的腐蚀行为研究[J]. 全面腐蚀控制,2015(2):71.
2 Xiao Guoqing, Feng Mingyang, Zhang Huabing, et al. Study on failure assessment for X80 high-grade pipeline with corrosion defects[J]. J Safety Sci Technol,2015,11(6):126(in Chinese).
肖国清, 冯明洋, 张华兵, 等. 含腐蚀缺陷的X80高钢级管道失效评估研究[J]. 中国安全生产科学技术,2015,11(6):126.
3 Zhao Bo, Shou Binan, Wang Hankui, et al. Research progress on the stress corrosion cracking of buried pipeline steel in soil environment[J]. China Special Equipment Safety,2014(1):63(in Chinese).
赵博, 寿比南, 王汉奎, 等. 埋地管线钢在土壤环境中的埋地腐蚀与研究进展[J].中国特种设备安全,2014(1):63.
4 Fan L, Du C, Liu Z, et al. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate[J]. Int J Minerals Metall Mater,2013,20(7):645.
5 Kong D, Wu Y, Dan L. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J Iron Steel Res Int,2013,20(1):40.
6 Wang Huixin. Corrosion behavior of X80 pipeline steel in Shanshan simulated soil solution[J]. Corros Protection Petrochem Ind,2013,30(4):8(in Chinese).
王会新. X80钢在鄯善土壤模拟溶液中的腐蚀行为[J]. 石油化工腐蚀与防护,2013,30(4):8.
7 Wang Ying, Yu Hongying, Cheng Yuan, et al. Corrosion behavior of X80 steel in simulated solution of Yichuan soil[J]. Mater Sci Technol,2013,21(3):129(in Chinese).
王莹, 俞宏英, 程远, 等. X80钢在伊川土壤模拟溶液中的腐蚀行为[J]. 材料科学与工艺,2013,21(3):129.
8 Jiang Jinyu, Wu Xiang. Calculation of the soil corrosion rate and anti-corrosion measures of buried steel pipeline[J]. Pipeline Technique Equipment,2013(5):49(in Chinese).
蒋金玉, 吴祥. 埋地钢管的土壤腐蚀速率计算及防腐措施[J]. 管道技术与设备,2013(5):49.
9 Fan Lin, Li Xiaogang, Du Cuiwei, et al. Current research on the corrosion fatigue crack propagation rate of pipeline steels[J]. Corros Protection,2012,33(11):990(in Chinese).
范林, 李晓刚, 杜翠薇, 等. 管线钢腐蚀疲劳裂纹扩展的研究现状[J]. 腐蚀与防护,2012,33(11):990.
10 Oldfield J W, Todd B. Ambient-temperature stress corrosion crac-king of austenitic stainless steel in swimming pools[J]. Mater Performance,1990,29:57.
11 Alabbas F M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int Biodeterioration Biodegradation,2013,78:34.
12 Zhu Yongyan. The effects of sulfate reducing bacteria and polarization potential on the stress corrosion cracking sensitivity of 16Mn and API X56 steel in sea-mud[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2007(in Chinese).
朱永艳. 硫酸盐还原菌和极化电位对海洋结构用钢在海泥中的应力腐蚀开裂敏感性的影响[D]. 青岛:中国科学院海洋研究所,2007.
13 Wu T, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros Sci,2014,88:291.
14 Wu T, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J]. J Mater Sci Technol,2015,31(4):413.
15 Wu T, Yan M, Zeng D, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution[J]. Acta Metall Sin (English Letters),2015,28(1):93.
16 Song Boqiang, Chen Xu, et al. Effect of SRB on SCC behavior of X70 pipeline steel and its weld joint in near-neutral pH solution[J]. Trans Mater Heat Treatment,2016,37(4):122(in Chinese).
宋博强, 陈旭,等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响[J]. 材料热处理学报,2016,37(4):122.
17 Wu T, Xu J, Yan M, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros Sci,2014,83:38.
18 Wang Dan, Xie Fei, Wu Ming, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel[J]. Trans Mater Heat Treatment,2016,37(5):198(in Chinese).
王丹, 谢飞, 吴明, 等. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响[J]. 材料热处理学报,2016,37(5):198.
19 Bai Zhenquan, Li Helin, Liu Daoxin, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment[J]. Mater Protection,2003,36(4):32(in Chinese).
白真权, 李鹤林, 刘道新, 等. 模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究[J]. 材料保护,2003,36(4):32.
20 Zhang Liang, Li Xiaogang, Du Cuiwei, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels[J]. Corros Sci Protection Technol,2009,21(1):62(in Chinese).
张亮, 李晓刚, 杜翠薇, 等. 管线钢应力腐蚀影响因素的研究进展[J]. 腐蚀科学与防护技术,2009,21(1):62.
21 Liu X, Frankel G S. Effects of compressive stress on localized corrosion in AA2024-T3[J]. Corros Sci,2006,48(10):3309.
22 Lin Mao, Liu Zhiyi, Chen Lai, et al. Effect of pre-stretching on corrosion behavior of Al-Cu-Mg alloy[J]. Mater Sci Eng Powder Me-tall,2015,20(1):72(in Chinese).
林茂, 刘志义, 陈来, 等. 预拉伸变形对Al-Cu-Mg合金腐蚀性能的影响[J]. 粉末冶金材料科学与工程,2015,20(1):72.
23 Cheng Yuan, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J]. J Mater Eng,2013(3):77(in Chinese).
程远,等. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程,2013(3):77.
24 Parkins R N, Blanchard W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH[J]. Corrosion,1994,50(5):394.
25 Guo Hao, Li Guangfu, Cai Xun, et al. Stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH solutions at different temperatures[J]. Acta Metall Sin,2004,40(9):967(in Chinese).
郭浩, 李光福, 蔡珣, 等. X70管线钢在不同温度近中性pH溶液中的应力腐蚀破裂行为[J]. 金属学报,2004,40(9):967.
26 Wang Shengrong, Du Cuiwei, et al. Field experimental study on stress corrosion cracking behavior of Q235 and X70 steels in Singapore soil[J]. J Mechan Eng,2015,51(12):30(in Chinese).
王胜荣, 杜翠薇,等. Q235与X70钢在新加坡土壤中的应力腐蚀行为现场试验研究[J]. 机械工程学报,2015,51(12):30.
27 Liu Z, Du C, Zhang X, et al. Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. Acta Metall Sin (English Letters),2013,26(4):489.
28 Dong Jin. Main influence factors to sour corrosion resistance of pipeline steel and test method[J]. Welded Pipe Tube,2013,36(11):31(in Chinese).
董瑾. 管线钢耐酸性腐蚀的主要影响因素及测试方法[J]. 焊管,2013,36(11):31.
29 刘永辉, 张佩芬.金属腐蚀学原理[M]. 第2 版. 北京: 航空工业出版社,1993.
30 Chen W, King F, Vokes E. Characteristics of near-neutral pH stress corrosion cracks in an X65 pipeline[J]. Corrosion,2002,58(3):267.
31 Beavers J A, Harle B A. Mechanisms of high-pH and near-neutral pH SCC of underground pipelines[J]. J Offshore Mechan Arctic Eng,2001,123(3):147.
32 Wang Z F, Atrens A. Initiation of stress corrosion cracking for pipeline steels in a carbonate-bicarbonate solution[J]. Metall Mater Trans A,1996,27(9):2686.
33 Xu Congmin, Luo Jinheng, Yao Chunfa, et al. Stress corrosion cracking behavior of X100 pipeline steel in saline-alkali soil with the action of SRB[J]. Mater Sci Technol,2016,24(2):68(in Chinese).
胥聪敏, 罗金恒, 姚春发, 等. X100管线钢在含SRB的盐碱土壤溶液中的SCC行为[J]. 材料科学与工艺,2016,24(2):68.
34 Zhao Licheng, Sun Cheng, Zhang Fubao, et al. Kinetics analysis of naphthenic acid corrosion in atmospheric and vacuum equipment[J]. Corros Sci Protection Technol,2007,19(1):27(in Chinese).
赵力成, 孙成, 张付宝, 等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术,2007,19(1):27.
35 Zehnder A J B. Biology of anaerobic microorganisms[M]. New York: John Wiley and Sons Inc.,1988.
36 Iverson W P. Research on the mechanisms of anaerobic corrosion[J]. Int Biodeterioration Biodegradation,2001,47(2):63.
37 Fang Shijie, Min Zhiyu, Liu Yaohui. Influence of SRB for corrosion of AZ91 magnesium alloy with MAO[J]. J Chongqing University of Technology:Nat Sci,2010,24(4):49(in Chinese).
方世杰, 闵志宇, 刘耀辉. SRB对微弧氧化AZ91镁合金的腐蚀影响[J]. 重庆理工大学学报:自然科学版,2010,24(4):49.
38 Yang Jiadong, Xu Fengling, Hou Jian, et al. Research progress in microbial corrosion of metal materials and its prevention[J]. Equipment Environmental Eng,2015,12(1):59(in Chinese).
杨家东, 许凤玲, 侯健, 等. 金属材料的微生物腐蚀与防护研究进展[J]. 装备环境工程,2015,12(1):59.
39 Iverson W P. Microbial corrosion of metals[J]. Adv Appl Micro-biol,1987,32(1):1.
40 Von Wolzogen Kühr C A H, Vander Vlugt L S. Aerobic and anaerobic iron corrosion in water mains[J]. Am Water Works Association,1953,45(1):33.
41 Postgate J R. The sulphate reducing bacteria and edition[M]. Cambridge: Cambridge University Press,1984.
42 Fan Youjun, Pi Zhenbang, et al. Microbial corrosion and its research methods[J]. Mater Protection,2001,34(5):18(in Chinese).
樊友军, 皮振邦, 等. 微生物腐蚀的作用机制与研究方法现状[J]. 材料保护,2001,34(5):18.
43 Duan J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochimica Acta,2008,54(1):22.
44 Dexter S C, Sullivan J D, Williams J, et al. Influence of substrate wettability on the attachment of marine bacteria to various surfaces[J]. Appl Microbiol,1975,30(2):298.
45 Wingender J, Neu T R, Flemming H C. Microbial extracellular polymeric substances: Characterization, structure, and function[M]. Berlin: Springer Science & Business Media,1999.
46 Wang Qingfei, Song Shizhe. Progress in marine biologically influen-ced corrosion study[J]. J Chinese Soc Corros Protection,2009,22(3):184(in Chinese).
王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展[J]. 中国腐蚀与防护学报,2009,22(3):184.
47 Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking[J]. Eng Failure Anal,2013,28:149.
48 Ye Qin, Li Kejuan, Guo Peipei, et al. Evolution of SRB biofilm and its influence on corrosion of Q235 carbon steel in oilfield sewage[J]. Corros Sci Protection Technol,2013,25(3):195(in Chinese).
叶琴, 李克娟, 郭佩佩, 等. 油田污水中碳钢表面生物膜生长规律及腐蚀电化学行为[J]. 腐蚀科学与防护技术,2013,25(3):195.
49 Tang Heqing. The effect of free oxygen in microbiologically influenced corrosion[J]. Mater Protection,1992,25(4):23(in Chinese).
唐和清. 微生物腐蚀中游离氧的作用[J]. 材料保护,1992,25(4):23.
50 Hardy J A, Bown J L. The corrosion of mild steel by biogenic sulfide films exposed to air[J]. Corrosion,1984,40(12):650.
51 Liu Yuxiu, Liu Guichang, Zhan Guangshen, et al. Progress in research on microbiologically influenced corrosion by sulfate-reducing bacteria[J]. Corros Protection,2002,23(6):245(in Chinese).
刘玉秀, 刘贵昌, 战广深,等. 硫酸盐还原菌引起的微生物腐蚀的研究进展[J]. 腐蚀与防护,2002,23(6):245.
52 Zhang Xiaoli, Liu Haihong, Chen Kaixun, et al. The study of gro-wing regulation of sulfate-reducing bacteria[J]. J Northwest University:Nat Sci Ed,1999,29(5):397(in Chinese).
张小里, 刘海洪, 陈开勋, 等. 硫酸盐还原菌生长规律的研究[J]. 西北大学学报:自然科学版,1999,29(5):397.
53 Yu Dunyi, Peng Fangming, Zheng Jiashe. A study on corrosion of casing induced by sulfate-reducing bacteria in oil field[J]. Acta Petrolei Sin,1996,17(1):154(in Chinese).
俞敦义, 彭芳明, 郑家燊. 硫酸盐还原菌对油田套管腐蚀的研究[J]. 石油学报,1996,17(1):154.
54 Moosavi A N, et al. Effect of sulfate-reducing bacteria activity on performance of scarified anodes[J]. Corrosion,1998,10(25):413.
55 Chen Ye. Study on influence factors and control methods of corrosion caused by sulfate reducing bacteria[D]. Dalian: Dalian University of Technology,2004(in Chinese).
陈野. 硫酸盐还原菌腐蚀的影响因素及其防治方法[D]. 大连:大连理工大学,2004.
56 Zeng Rongchang, et al. Study on corrosion of a medical Mg-Li-Ca alloy with calcium phosphate coating[J]. J Chongqing University of Technology:Nat Sci,2010,24(10):34(in Chinese).
曾荣昌, 等. 医用Mg-Li-Ca合金表面Ca-P涂层腐蚀研究[J]. 重庆理工大学学报:自然科学版,2010,24(10):34.
[1] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[2] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[3] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[4] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[5] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[6] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[7] 谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
[8] 赵朋成, 刘振伟, 王璐璐, 高世一, 王振民. X65管线钢管闪光对焊工艺参数对焊接接头力学性能和缺陷的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed