Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 213-218    https://doi.org/10.11896/j.issn.1005-023X.2018.02.011
  物理   材料研究 |材料 |
苎麻纤维增强原位阴离子聚合尼龙6复合材料的制备及性能研究
刘光志1,李伟1,2,费又庆1
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南大学喷射沉积技术及应用湖南省重点实验室,长沙 410082
Study on the Preparation and Properties of Textile-ramie Fiber Reinforced In-situ Anionic Polyamide-6 Composites
Guangzhi LIU1,Wei LI1,2,Youqing FEI1
1 College of Materials Science and Engineering, Hunan University, Changsha 410082
2 Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University,Changsha 410082
下载:  全 文 ( PDF ) ( 3515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料。主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察。研究表明:当热处理温度为280 ℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化。RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘光志
李伟
费又庆
关键词:  苎麻纤维  热处理  原位阴离子聚合  尼龙6  复合材料    
Abstract: 

In this paper, textile-ramie fiber (RF) reinforced anionic polyamide-6 (APA6) composites were prepared successfully with the heat treated ramie fiber and caprolactam as monomer.The effects of the heat-treatment on the functional groups, the crystallization, the mechanical properties and the fracture morphology of the ramie fiber were studied. Meanwhile, the mechanical properties, thermal stability, as well as interfacial properties of the RF/APA6 composites were also investigated. The results showed that the hydroxyl groups covering on the ramie fiber surface decreased significantly, the crystallinity, the tensile strength and modulus decreased after the 280 ℃ heat-treatment, but no obvious changes in the morphology of the ramie fiber. The interfacial adhesion between the resin and the ramie fiber of the RF/APA6 composites was excellent. Compared with the neat APA6, the tensile strength of the composites increased slightly, while the tensile modulus, flexural property and the thermal stability were increased significantly.

Key words:  ramie fiber    heat treatment    in-situ anionic polymerization    polyamide-6    composites
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ327.9  
基金资助: 大学生创新性实验和创新训练计划项目(201610532005);湖南省科技计划项目(2015TP1035)
引用本文:    
刘光志,李伟,费又庆. 苎麻纤维增强原位阴离子聚合尼龙6复合材料的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 213-218.
Guangzhi LIU,Wei LI,Youqing FEI. Study on the Preparation and Properties of Textile-ramie Fiber Reinforced In-situ Anionic Polyamide-6 Composites. Materials Reports, 2018, 32(2): 213-218.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.011  或          https://www.mater-rep.com/CN/Y2018/V32/I2/213
图1  不同热处理温度条件下RF增强APA6复合材料的原位阴离子聚合的实验结果
图2  试样卡示意图
图3  苎麻纤维单丝拉伸断面SEM图:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理;(d)利用Photoshop软件计算断面面积
图4  苎麻纤维的红外光谱:(a)未处理;(b)160 ℃ 热处理;(c)280 ℃热处理
图5  纤维素分子内脱水过程机理图
图6  热处理前后苎麻纤维的XRD谱:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理
Index Samples Max Min Average STDVE Count
Tensile strength/MPa Untreated 1 384 741 1 098 163 15
160 ℃ 1 098 759 898 105 15
280 ℃ 318 158 205 47 15
Tensile modulus/GPa Untreated 51.5 29.4 41.6 6.3 15
160 ℃ 50.3 24.6 35.5 7.1 15
280 ℃ 29.1 15.9 23.0 3.2 15
表1  经不同温度热处理后苎麻纤维单丝的力学性能
图7  热处理前后苎麻纤维单丝的应力-应变曲线:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理
图8  (a)未经处理和(b)经280 ℃热处理的RF单丝微观形貌;(c,d)RF增强APA6复合材料的冲击断面形貌(RF经280 ℃热处理)
Samples Tensile
strength
MPa
Tensile
modulus
MPa
Flexural
strength
MPa
Flexural
modulus
MPa
Neat APA6 55.7 1 633.7 63.3 1 431.8
RF/APA6 57.8 3 062.1 120.6 3 578.7
表2  APA6和RF/APA6复合材料的力学性能
Samples T1%/℃ T5%/℃ T10%/℃ T50%/℃
Neat APA6 153.1 279.7 294.5 332.2
RF/APA6 151.7 297.5 381.1 435.6
表3  热失重测试中APA6及RF/APA6复合材料1%、5%、10%、50%失重率对应的温度
图9  APA6及RF/APA6复合材料的TG曲线
1 Tan Shouzai, Wang Meigui, Song Yonghong . The modification research of MC nylon[J]. Journal of Guangdong Industry Technical College, 2006,5(2):1(in Chinese).
2 谭寿再, 王玫瑰, 孙永红 . MC尼龙的改性研究[J]. 广东轻工职业技术学院学报, 2006,5(2):1.
3 Cheng Xiaochun, Yao Cheng . Studies on MC nylon modified with laurolactam[J]. Journal of Nanjing Normal University (Engineering and Technology), 2004,4(4):61(in Chinese).
4 程晓春, 姚成 . 十二内酰胺改性铸型尼龙的研究[J]. 南京师范大学学报, 2004,4(4):61.
5 Jiang Ying, Yang Guisheng, Wu Yucheng . Recent progress in modification of PA6 via anionic polymerization[J]. Plastics Science and Technology, 2013,41(12):96(in Chinese).
6 蒋英, 杨桂生, 吴玉程 . 阴离子聚合聚酰胺6改性研究的新进展[J]. 塑料科技, 2013,41(12):96.
7 Hou L, Yang G . Morphology and thermal properties of MC PA6/ABS by in situ polymerization of e-caprolactam[J]. Macromolecular Chemistry and Physics, 2005,206(18):1887.
8 Rusu G, Rusu E . Anionic nylon 6/TiO2 composite materials: Effects of TiO2 filler on the thermal and mechanical behavior of the composites[J]. Polymer Composites, 2012,33(9):1557.
9 Rijswijk K V, Bersee H E N, Beukers A , et al. Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic compo-sites: Influence of polymerisation temperature on matrix properties[J]. Polymer Testing, 2006,25(3):392.
10 Rijswijk K V, Bersee H E N, Jagerb W F , et al. Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic compo-sites: Choice of activator and initiator[J]. Composites Part A, 2006,37:949.
11 Lin Jinqing, Huang Hai, Xu Xubo , et al. Synjournal and characte-rization of CF/MC nylon 6 in-situ composites[J]. Journal of Huaqiao University (Natural Science), 2006,27(1):92(in Chinese).
12 林金清, 黄海, 徐旭波 , 等. 碳纤维/MC尼龙6原位复合材料的制备与表征[J]. 华侨大学学报(自然科学版), 2006,27(1):92.
13 Tian Wenwei, Deng Xiangyun, Zhang Haitao , et al. Preparation of PA6/KF composite using in-situ polymerization[J]. Plastics, 2012,41(5):70(in Chinese).
14 田文伟, 邓湘云, 张海涛 , 等. 原位聚合法制备PA6/KF复合材料[J]. 塑料, 2012,41(5):70.
15 Yang Yazhou, Tong Jin, Ma Yunhai , et al. Study on modification of jute fibers and mechanical properties of phenolic resin matrix composites reinforced with jute fibers[J]. Journal of Jilin Agricultural University, 2009,31(6):788(in Chinese).
16 杨亚洲, 佟金, 马云海 , 等. 改性黄麻纤维和酚醛树脂复合材料的力学性能[J]. 吉林农业大学学报, 2009,31(6):788.
17 Liang S, Nouril H, Lafranchel E . Thermo-compression forming of flax fibre-reinforced polyamide-6 composites: Influence of the fibre thermal degradation on mechanical properties[J]. Journal of Mate-rials Science, 2015,50(23):7660.
18 Ga?an P, Garbizu S, Llano-Ponte R , et al. Surface modification of sisal fibers: Effects on the mechanical and thermal properties of their epoxy composites[J]. Polymer Composites, 2005,26(2):121.
19 Zhou Nanting . Interfacial, structure and mechanical properties of ramie fiber reinforced poly(lactic acid) (PLA) composites[D]. Shanghai:Donghua University, 2014.
20 周楠婷 . 苎麻纤维增强聚乳酸复合材料的界面、结构改进及其力学性能研究[D]. 上海:东华大学, 2014.
21 Li S, Ren J, Yuan H , et al. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites[J]. Polymer International, 2010,59(2):242.
22 Segal L, Creely J, Martin A E J , et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786.
23 Shen Hanzhi . Preparation and properties of heat-treated plant fiber/poly(lactic acid) composites[D]. Guangzhou:South China University of Technology, 2011.
24 沈寒知 . 热处理植物纤维/聚乳酸复合材料的制备与性能研究[D]. 广州:华南理工大学, 2011.
25 Prasad N, Agarwal V K, Sinha S . Banana fiber reinforced low-density polyethylene composites: Effect of chemical treatment and compatibilizer addition[J]. Iranian Polymer Journal, 2016,25(3):229.
26 Jazaeri E, Tsuzuki T . Effect of pyrolysis conditions on the properties of carbonaceous nanofibers[J]. Cellulose, 2013,20(2):707.
27 Wada M, Okano T . Localization of Iαand Iβ phases in algal cellulose revealed by acid treatments[J]. Cellulose, 2001,8(3):183.
28 Ruan Peiying . Experimental study on application of radio frequency and microwave heating into retting of flax straws[D]. Huhhot:Inner Mongolia Agricultural University, 2015.
29 阮培英 . 射频和微波热处理应用于亚麻原茎脱胶的试验研究[D]. 呼和浩特:内蒙古农业大学, 2015.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[12] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[15] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed