Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 213-218    https://doi.org/10.11896/j.issn.1005-023X.2018.02.011
  物理   材料研究 |材料 |
苎麻纤维增强原位阴离子聚合尼龙6复合材料的制备及性能研究
刘光志1,李伟1,2,费又庆1
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南大学喷射沉积技术及应用湖南省重点实验室,长沙 410082
Study on the Preparation and Properties of Textile-ramie Fiber Reinforced In-situ Anionic Polyamide-6 Composites
Guangzhi LIU1,Wei LI1,2,Youqing FEI1
1 College of Materials Science and Engineering, Hunan University, Changsha 410082
2 Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University,Changsha 410082
下载:  全 文 ( PDF ) ( 3515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料。主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察。研究表明:当热处理温度为280 ℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化。RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘光志
李伟
费又庆
关键词:  苎麻纤维  热处理  原位阴离子聚合  尼龙6  复合材料    
Abstract: 

In this paper, textile-ramie fiber (RF) reinforced anionic polyamide-6 (APA6) composites were prepared successfully with the heat treated ramie fiber and caprolactam as monomer.The effects of the heat-treatment on the functional groups, the crystallization, the mechanical properties and the fracture morphology of the ramie fiber were studied. Meanwhile, the mechanical properties, thermal stability, as well as interfacial properties of the RF/APA6 composites were also investigated. The results showed that the hydroxyl groups covering on the ramie fiber surface decreased significantly, the crystallinity, the tensile strength and modulus decreased after the 280 ℃ heat-treatment, but no obvious changes in the morphology of the ramie fiber. The interfacial adhesion between the resin and the ramie fiber of the RF/APA6 composites was excellent. Compared with the neat APA6, the tensile strength of the composites increased slightly, while the tensile modulus, flexural property and the thermal stability were increased significantly.

Key words:  ramie fiber    heat treatment    in-situ anionic polymerization    polyamide-6    composites
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ327.9  
基金资助: 大学生创新性实验和创新训练计划项目(201610532005);湖南省科技计划项目(2015TP1035)
引用本文:    
刘光志,李伟,费又庆. 苎麻纤维增强原位阴离子聚合尼龙6复合材料的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 213-218.
Guangzhi LIU,Wei LI,Youqing FEI. Study on the Preparation and Properties of Textile-ramie Fiber Reinforced In-situ Anionic Polyamide-6 Composites. Materials Reports, 2018, 32(2): 213-218.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.011  或          http://www.mater-rep.com/CN/Y2018/V32/I2/213
图1  不同热处理温度条件下RF增强APA6复合材料的原位阴离子聚合的实验结果
图2  试样卡示意图
图3  苎麻纤维单丝拉伸断面SEM图:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理;(d)利用Photoshop软件计算断面面积
图4  苎麻纤维的红外光谱:(a)未处理;(b)160 ℃ 热处理;(c)280 ℃热处理
图5  纤维素分子内脱水过程机理图
图6  热处理前后苎麻纤维的XRD谱:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理
Index Samples Max Min Average STDVE Count
Tensile strength/MPa Untreated 1 384 741 1 098 163 15
160 ℃ 1 098 759 898 105 15
280 ℃ 318 158 205 47 15
Tensile modulus/GPa Untreated 51.5 29.4 41.6 6.3 15
160 ℃ 50.3 24.6 35.5 7.1 15
280 ℃ 29.1 15.9 23.0 3.2 15
表1  经不同温度热处理后苎麻纤维单丝的力学性能
图7  热处理前后苎麻纤维单丝的应力-应变曲线:(a)未处理;(b)160 ℃热处理;(c)280 ℃热处理
图8  (a)未经处理和(b)经280 ℃热处理的RF单丝微观形貌;(c,d)RF增强APA6复合材料的冲击断面形貌(RF经280 ℃热处理)
Samples Tensile
strength
MPa
Tensile
modulus
MPa
Flexural
strength
MPa
Flexural
modulus
MPa
Neat APA6 55.7 1 633.7 63.3 1 431.8
RF/APA6 57.8 3 062.1 120.6 3 578.7
表2  APA6和RF/APA6复合材料的力学性能
Samples T1%/℃ T5%/℃ T10%/℃ T50%/℃
Neat APA6 153.1 279.7 294.5 332.2
RF/APA6 151.7 297.5 381.1 435.6
表3  热失重测试中APA6及RF/APA6复合材料1%、5%、10%、50%失重率对应的温度
图9  APA6及RF/APA6复合材料的TG曲线
1 Tan Shouzai, Wang Meigui, Song Yonghong . The modification research of MC nylon[J]. Journal of Guangdong Industry Technical College, 2006,5(2):1(in Chinese).
2 谭寿再, 王玫瑰, 孙永红 . MC尼龙的改性研究[J]. 广东轻工职业技术学院学报, 2006,5(2):1.
3 Cheng Xiaochun, Yao Cheng . Studies on MC nylon modified with laurolactam[J]. Journal of Nanjing Normal University (Engineering and Technology), 2004,4(4):61(in Chinese).
4 程晓春, 姚成 . 十二内酰胺改性铸型尼龙的研究[J]. 南京师范大学学报, 2004,4(4):61.
5 Jiang Ying, Yang Guisheng, Wu Yucheng . Recent progress in modification of PA6 via anionic polymerization[J]. Plastics Science and Technology, 2013,41(12):96(in Chinese).
6 蒋英, 杨桂生, 吴玉程 . 阴离子聚合聚酰胺6改性研究的新进展[J]. 塑料科技, 2013,41(12):96.
7 Hou L, Yang G . Morphology and thermal properties of MC PA6/ABS by in situ polymerization of e-caprolactam[J]. Macromolecular Chemistry and Physics, 2005,206(18):1887.
8 Rusu G, Rusu E . Anionic nylon 6/TiO2 composite materials: Effects of TiO2 filler on the thermal and mechanical behavior of the composites[J]. Polymer Composites, 2012,33(9):1557.
9 Rijswijk K V, Bersee H E N, Beukers A , et al. Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic compo-sites: Influence of polymerisation temperature on matrix properties[J]. Polymer Testing, 2006,25(3):392.
10 Rijswijk K V, Bersee H E N, Jagerb W F , et al. Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic compo-sites: Choice of activator and initiator[J]. Composites Part A, 2006,37:949.
11 Lin Jinqing, Huang Hai, Xu Xubo , et al. Synjournal and characte-rization of CF/MC nylon 6 in-situ composites[J]. Journal of Huaqiao University (Natural Science), 2006,27(1):92(in Chinese).
12 林金清, 黄海, 徐旭波 , 等. 碳纤维/MC尼龙6原位复合材料的制备与表征[J]. 华侨大学学报(自然科学版), 2006,27(1):92.
13 Tian Wenwei, Deng Xiangyun, Zhang Haitao , et al. Preparation of PA6/KF composite using in-situ polymerization[J]. Plastics, 2012,41(5):70(in Chinese).
14 田文伟, 邓湘云, 张海涛 , 等. 原位聚合法制备PA6/KF复合材料[J]. 塑料, 2012,41(5):70.
15 Yang Yazhou, Tong Jin, Ma Yunhai , et al. Study on modification of jute fibers and mechanical properties of phenolic resin matrix composites reinforced with jute fibers[J]. Journal of Jilin Agricultural University, 2009,31(6):788(in Chinese).
16 杨亚洲, 佟金, 马云海 , 等. 改性黄麻纤维和酚醛树脂复合材料的力学性能[J]. 吉林农业大学学报, 2009,31(6):788.
17 Liang S, Nouril H, Lafranchel E . Thermo-compression forming of flax fibre-reinforced polyamide-6 composites: Influence of the fibre thermal degradation on mechanical properties[J]. Journal of Mate-rials Science, 2015,50(23):7660.
18 Ga?an P, Garbizu S, Llano-Ponte R , et al. Surface modification of sisal fibers: Effects on the mechanical and thermal properties of their epoxy composites[J]. Polymer Composites, 2005,26(2):121.
19 Zhou Nanting . Interfacial, structure and mechanical properties of ramie fiber reinforced poly(lactic acid) (PLA) composites[D]. Shanghai:Donghua University, 2014.
20 周楠婷 . 苎麻纤维增强聚乳酸复合材料的界面、结构改进及其力学性能研究[D]. 上海:东华大学, 2014.
21 Li S, Ren J, Yuan H , et al. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites[J]. Polymer International, 2010,59(2):242.
22 Segal L, Creely J, Martin A E J , et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786.
23 Shen Hanzhi . Preparation and properties of heat-treated plant fiber/poly(lactic acid) composites[D]. Guangzhou:South China University of Technology, 2011.
24 沈寒知 . 热处理植物纤维/聚乳酸复合材料的制备与性能研究[D]. 广州:华南理工大学, 2011.
25 Prasad N, Agarwal V K, Sinha S . Banana fiber reinforced low-density polyethylene composites: Effect of chemical treatment and compatibilizer addition[J]. Iranian Polymer Journal, 2016,25(3):229.
26 Jazaeri E, Tsuzuki T . Effect of pyrolysis conditions on the properties of carbonaceous nanofibers[J]. Cellulose, 2013,20(2):707.
27 Wada M, Okano T . Localization of Iαand Iβ phases in algal cellulose revealed by acid treatments[J]. Cellulose, 2001,8(3):183.
28 Ruan Peiying . Experimental study on application of radio frequency and microwave heating into retting of flax straws[D]. Huhhot:Inner Mongolia Agricultural University, 2015.
29 阮培英 . 射频和微波热处理应用于亚麻原茎脱胶的试验研究[D]. 呼和浩特:内蒙古农业大学, 2015.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed