Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21079-21084    https://doi.org/10.11896/cldb.21010055
  环境催化材料 |
三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究
王成志1, 高凤雨1,2, 于庆君1,2, 易红宏1,2, 倪书权1, 唐晓龙1,2
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Study on Synthesis and Performance of Melamine Sponge-based High-efficiency Flexible Denitration Catalytic Material
WANG Chengzhi1, GAO Fengyu1,2, YU Qingjun1,2, YI Honghong1,2, NI Shuquan1, TANG Xiaolong1,2
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用两步水热法在三聚氰胺海绵碳泡沫基底(MF)上原位合成MnCo纳米阵列脱硝催化剂用于NH3选择性催化还原NOx,并研究了Co改性对Mn-MF低温性能的影响。结果表明:Co改性可以显著提高Mn-MF的低温活性、N2选择性以及抗水抗硫性能;Mn2Co-MF催化剂具有相对最优的低温活性,在140~220 ℃温度区间内,其脱硝效率可达90%以上。此外,通过SEM、XRD、XPS和H2-TPR、NH3-TPD等不同表征手段探讨了Mn2Co-MF催化剂的催化性能、氧化还原性能和结构之间的关系;Co的引入不仅可以增大催化剂的比表面积和孔容,而且还可以促进Mn2Co-MF催化剂表面氧物种的富集,能够产生更多的酸性位点,提高催化剂的还原性,从而提高其活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王成志
高凤雨
于庆君
易红宏
倪书权
唐晓龙
关键词:  碳复合材料  三维材料  选择性催化还原  柔性催化剂    
Abstract: Atwo-step hydrothermal method was applied to synthesize the MnCo nanoarray denitration catalyst on carbon foam substrate (MF) for the selective catalytic reduction of NOx by NH3. The effect of Co-doping on the low temperature performance of Mn-MF was also studied. The results show that Co-doping can significantly improve the low-temperature activity and selectivity of Mn-MF and the resistance of H2O and SO2. The Mn2Co-MF catalyst has the best low-temperature performance and the denitration efficiency can reach more than 90% at 140—220 ℃. In addition, SEM, XRD, XPS, H2-TPR, NH3-TPD and other characterization techniques are applied to explore the relationship between the catalytic performance, redox performance and structure of Mn2Co-MF catalyst. The results show that the introduction of Co can not only increase the specific surface area and pore volume of the catalyst, but also promote the enrichment of oxygen species on the surface of the Mn2Co-MF catalyst, produce more acid sites, and improve the reducibility of the catalyst, thereby improving the low temperature activity.
Key words:  carbon composite materials    three-dimensional materials    selective catalytic reduction    flexible catalysts
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  X511  
基金资助: 国家重点研发计划(2017YFC0210303);国家自然科学基金联合基金重点项目(U20A20130)
通讯作者:  txiaolong@126.com   
作者简介:  王成志,2018年毕业于石河子大学获得工学硕士学位,现为北京科技大学在读博士生,在唐晓龙教授指导下从事新型环境功能材料研发、工业烟气污染物减排技术开发。在国内外学术刊物上发表科研论文7篇,SCI收录6篇。
唐晓龙,北京科技大学教授,博士生导师,科学技术研究院副院长,教育部新世纪优秀人才。主要从事工业烟气污染物控制及协同净化、特殊外场协同催化净化、有机污染物催化净化、环境功能材料与再生等关键技术及装备的研发。主持国家重点研发计划大气专项课题多污染物中低温协同催化净化技术及示范、国家科技重点研发计划课题、国家自然科学基金、北京市“首都蓝天培育专项”等省部级项目20余项。在国内外学术刊物上发表科研论文260余篇,SCI收录150余篇;授权国家发明专利25项,主编出版论著6部。荣获教育部新世纪优秀人才、国家级教学成果一等奖、中国有色金属工业科学技术二等奖、中国环境科学学会青年科技奖等荣誉奖项10余项。
引用本文:    
王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙. 三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究[J]. 材料导报, 2021, 35(21): 21079-21084.
WANG Chengzhi, GAO Fengyu, YU Qingjun, YI Honghong, NI Shuquan, TANG Xiaolong. Study on Synthesis and Performance of Melamine Sponge-based High-efficiency Flexible Denitration Catalytic Material. Materials Reports, 2021, 35(21): 21079-21084.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010055  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21079
1 Ali S, Chen L, Li Z, et al. Applied Catalysis B: Environmental, 2018, 236, 25.
2 Cai S X, Liu J, Zha K W, et al. Nanoscale, 2017, 9, 5648.
3 Wu X M, Ni K W, Yu X L, et al. Journal of Fuel Chemistry and Technology, 2020, 48(2), 179 (in Chinese).
吴孝敏, 倪凯文, 宇小龙,等.燃料化学学报, 2020, 48(2), 179.
4 Wang X, Li X, Zhao Q, et al. Chemical Engineering Journal, 2016, 288, 216.
5 Ma X Y, Liang Y, Cui S P, et al. Materials Reports B: Research Papers, 2018, 32(11), 149 (in Chinese).
马晓宇, 梁雨, 崔素萍,等.材料导报:研究篇, 2018, 32(11), 149.
6 Lian Z H, Shan W P, Zhang Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(38), 12736.
7 Meng D, Zhan W, Guo Y, et al. Acs Catalysis, 2015, 5(10), 5973.
8 Huang X B, Wang P, Tao J C, et al. Journal of Inorganic Materials, 2020, 35(5), 573 (in Chinese).
黄秀兵, 王鹏, 陶进长,等. 无机材料学报, 2020, 35(5), 573.
9 Tang X L, Li C L, Yi H H, et al. Chemical Engineering Journal, 2018, 333, 467.
10 Gao F Y, Tang X L, Yi H H, et al. Chemical Engineering Journal, 2017, 317, 20.
11 Gao F Y, Tang X L, Yi H H, et al. Applice Surface Science, 2018, 443, 103.
12 Qiu M, Zhan S H, Yu H, et al. Nanoscale, 2015, 7(6), 2568.
13 Zhang L, Shi L Y, Huang L, et al. Acs Catalysis, 2014, 4(6), 1753.
14 Liu B, Du J, Lv X, et al. Catalysis Science & Technology, 2015, 5(2), 1241.
15 Boix A V, Aspromonte S G, Miró E E. Applied Catalysis A General, 2008, 341(1-2), 26.
16 Li G B, Zhu B Z, Sun Y L, et al. Journal of Materials Science, 2018, 53, 9674.
17 Mu W N, Wang Q, Wang L Z, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5), 93 (in Chinese).
穆伟娜, 王琼, 王力霞, 等. 重庆理工大学学报(自然科学), 2021, 35(5), 93.
18 Han L P, Gao M, Feng C, et al. Environmental Science & Technology, 2019, 53(10), 5946.
19 Kryca J, JodOwski P J, Iwaniszyn M, et al. Catalysis Today, 2016, 268, 142.
20 Tang X L, Wang C Z, Gao F Y, et al. Journal of Environmental Chemical Engineering, 2020, 5(8), 104399.
21 Yao X J, Ma K L, Zou W, et al. Chinese Journal of Catalysis, 2017, 38(1), 146.
22 Tronconi E, Nova I, Ciardelli C, et al. Journal of Catalysis, 2007, 245(1), 1.
23 Li Y, Li Y P, Wen Y, et al. RSC Advances, 2016, 6(60), 54926.
24 Sheng Z Y, Ma D R, Yu D Q, et al. Chinese Journal of Catalysis, 2018, 39(4), 821.
25 Li Y, Li Y P, Shi Q, et al. Journal of Sol Gel Science & Technology, 2017, 81(2), 576.
26 Li G, Zhu B, Sun Y, et al. Journal of Materials Science, 2018, 53, 9674.
27 Liu Z M, Yi Y, Zhang S X, et al. Catalysis Today, 2013, 216, 76.
28 Thirupathi B, Smirniotis P G. Journal Catalysis, 2012, 288, 74.
29 Qiao J, Wang N, Wang Z, et al. Catalysis Communication, 2015, 72, 111.
30 Zhang D S, Hu H, Cai S X, et al. Acs Catalysis, 2015, 5(10), 6069.
31 Tang X L, Wang C Z, Gao F Y, et al. Journal of Colloid and Interface Science, 2021, 603, 291.
32 Hu X N, Huang L, Zhang J P, et al. Journal of Materials Chemistry A, 2018, 6(7), 2952.
33 Liu T, Zhang S T. CIESC Journal, 2020, 71(7), 3106 (in Chinese).
刘涛, 张书廷.化工学报, 2020, 71(7), 3106.
34 Fang C, Zhang D S, Cai S X, et al. Nanoscale, 2013, 5(19), 9199.
[1] 王宝冬, 刘子林, 林德海, 曹子雄, 何发泉, 路光杰, 肖雨亭. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010.
[2] 郭梓阳, 霍旺晨, 张育新, 任山, 杨剑. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099.
[3] 王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
[4] 赫连一哲, 马晓宇, 崔素萍, 万业强. 原位漫反射红外光谱研究NO和NH3在MnOx/TiO2催化材料上的吸附行为及反应机理[J]. 材料导报, 2018, 32(22): 3973-3978.
[5] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[6] 孟刘邦, 房晶瑞, 管学茂. 活性组分掺杂对低温锰基催化剂脱硝性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 35-39.
[7] 解智博, 宋艳军, 梁金生, 薛刚, 孟军平, 孙剑锋. 锰基催化剂低温选择催化还原处理NOx的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 38-43.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed