Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 357-361    https://doi.org/10.11896/j.issn.1005-023X.2018.03.002
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
大倍率二氧化硅/碳复合材料的制备及电化学性能表征
王艳珍1,2,3,陈明鸣1,2,3,王成扬1,2,3
1 天津大学北洋园校区化工学院,天津 300350
2 天津大学绿色合成与转化教育部重点实验室,天津 300350
3 天津化学化工协同创新中心,天津 300072
Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials
Yanzhen WANG1,2,3,Mingming CHEN1,2,3,Chengyang WANG1,2,3
1 School of Chemical Engineering and Technology, Peiyang Campus, Tianjin University, Tianjin 300350
2 Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350
3 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072
下载:  全 文 ( PDF ) ( 1798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了满足新能源储能及电动汽车对锂离子电池持续快速充电、慢速放电性能的要求,以正硅酸乙酯为二氧化硅前驱体,在两亲性炭材料(ACM)与聚乙二醇400(PEG400)形成的氢键限域体系中制备了大倍率二氧化硅/碳复合锂电负极材料(SiO2-130/C)。材料表征结果表明,二氧化硅的粒径由500 nm(未限域)降低到130 nm(限域),同时,富碳的ACM在二氧化硅纳米颗粒表面构建了导电性良好的碳框架。在0.1 A·g -1和1 A·g -1的电流密度下,SiO2-130/C的可逆比容量分别为527 mAh·g -1和347 mAh·g -1,且在1 A·g -1的电流密度下连续400个充放电循环后,仍具有483 mAh· g -1的可逆比容量,表现出优异的倍率性能及稳定的电化学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳珍
陈明鸣
王成扬
关键词:  两亲性炭材料  二氧化硅/碳复合材料  倍率性能    
Abstract: 

High-rate SiO2/C composite (called SiO2-130/C) was synthesized using tetraethyl orthosilicate (TEOS) as SiO2 precursor in a amphiphilic carbonaceous material (ACM)-polyethylene glycol 400(PEG 400) mixture. Confinement effect of smaller cells formed by ACM and PEG 400 on diameter of SiO2 was studied. The results showed that the diameter of SiO2 nanospheres was reduced from 500 nm (without confinement effect) to 130 nm (with confinement effect),and carbon framework resulting from carbon-rich ACM was constructed on the surface of SiO2. Electrochemical performance of SiO2-130/C composite was evaluated as anode material for lithium ion batteries. The reversible capacities of the SiO2-130/C composite were 527 mAh ·g -1 and 347 mAh·g -1 at current densities of 0.1 A·g -1and 1 A·g -1, respectively. Moreover, the SiO2-130/C composite, after the process of electrochemical activation, exhibited reversible capacitance as high as 483 mAh·g -1 at a current density of 1 A·g -1 over 400 cycles,indicating great rate performance and long-term cycling stability of the as-prepared SiO2-130/C composite.

Key words:  amphiphilic carbonaceous material    SiO2/C composite    rate capability
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51372168)
作者简介:  王艳珍:女,1991年生,硕士研究生,主要研究方向为锂离子电池负极材料 E-mail: wyz0614@tju.edu.cn|陈明鸣:通信作者,女,1971年生,教授,博士研究生导师,主要研究方向为新型炭材料与绿色电源技术 E-mail: chmm@tju.edu.cn
引用本文:    
王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials. Materials Reports, 2018, 32(3): 357-361.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.002  或          http://www.mater-rep.com/CN/Y2018/V32/I3/357
图1  (a)SiO2-500的扫描电镜图;(b)SiO2-500的透射电镜图;(c)SiO2-130/C复合材料的扫描电镜图;(d)SiO2-130/C的透射电镜图;(e)SiO2-130/C的线扫数据曲线(图(d)中线形所示区域);(f) SiO2-130/C的能谱分析及数据(图(d)中圆形所示区域)
图2  (a)SiO2-130/C在空气中的热重曲线和(b)SiO2-500与SiO2-130/C的XRD谱
图3  (a)SiO2-130/C与SiO2-500的CV曲线;(b)SiO2-130/C与SiO2-500的交流阻抗图;(c)SiO2-130/C的恒流充放电曲线;(d)SiO2-500与SiO2-130/C的倍率性能图
图4  SiO2-130/C的循环曲线
图5  SiO2-130/C充放电前后的交流阻抗图
1 Nguyen C C, Choi H, Song S W . Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries[J]. Journal of Electrochimica Society, 2013,160(6):A906.
2 Takezawa H, Iwamoto K, Ito S , et al. Electro-chemical behaviors of nonstoichiometric silicon subo-xides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries[J]. Journal of Power Sources, 2013,244:49.
3 Li X F, Dhanabalan A, Meng X B , et al. Nanoporous tree-like SiO2 films fabricated by sol-gel assisted electrostatic spray deposition[J]. Microporous and Mesoporous Materials, 2012,151:488.
4 Sasidharan M, Liu D N, Gunawardhana D , et al. Synjournal, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres[J]. Journal of Materials Chemistry, 2011,21(36):13881.
5 Lv P, Zhao H, Wang J , et al. Facile preparation and electrochemical properties of amorphous SiO2/C compo-site as anode material for lithium ion batteries[J]. Journal of Power Sources, 2013,237:291.
6 Li M, Li J, Li K , et al. SiO2/Cu/polyacrylonitrile-C composite as anode material in lithium ion batteries[J]. Journal of Power Sources, 2013,240:659.
7 Guo B K, Shu J, Wang Z X , et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communication, 2008,10(12):1876.
8 Yao Y, Zhang J, Xue L , et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011,196(23):10240.
9 Jiao M L, Liu K L, Shi Z Q , et al. SiO2/carbon composite microspheres with hollow core-shell structure as high stability electrode for lithium ion batteries[J]. Chemelectrochem, 2017,4(3):542.
10 Cao X, Chuan X, Li S , et al. Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2015,33(2):110.
11 Meng J K, Cao Y, Suo Y , et al. Facile fabrication of 3D SiO2@graphene aerogel compo-sites as anode material for lithium ion batteries[J]. Electrochimica Acta, 2015,176:1001.
12 Wu X, Shi Z Q, Wang C Y , et al. Nanostructured SiO2/C compo-sites prepared via electrospinning and their electrochemical properties for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2015,746:62.
13 Wang J . Study on the structure of amphiphilic carbon-aceous mate-rial and its applications in electrode materials[D]. Tianjin:Tianjin University, 2010(in Chinese).
13 王瑨 . 两亲性炭材料的结构及其在电极材料领域应用的研究[D]. 天津:天津大学, 2010.
14 Chen M M, Zhang X Y, Wang L , et al. Effects of amphiphilic carbonaceous nanomaterial on the synjournal of MnO2 and its energy storage capability as an electrode material for pseudocapacitors[J]. Industrial & Engineering Chemistry Research, 2014,53(27):10974.
15 Wang J, Chen M M, Wang C Y , et al. Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-perfor-mance electric double-layer capacitors[J]. Journal of Power Sources, 2011,196(1):550.
16 Favors Z, Wang W, Bay H H , et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific Reports, 2014,4:4605.
17 Liu C, Li F, Ma L P , et al. Advanced materials for energy storage[J]. Advanced Materials, 2010,22:E28.
18 Li H H, Wu X L, Sun H Z , et al. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance[J]. Journal of Physical Chemistry C, 2015,119(7):3495.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[3] 梁杰铬, 罗政, 闫钰, 袁斌. 面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法[J]. 《材料导报》期刊社, 2018, 32(11): 1779-1786.
[4] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[5] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[6] 张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
[7] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[8] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[9] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[10] 丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 95-100.
[11] 杨时峰, 任文锋, 陈剑. 新一代高比能量锂离子电池富锂氧化物正极材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 1-10.
[12] 叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭. 过渡金属离子掺杂对磷酸铁锂性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 29-32.
[13] 夏文明,唐仁衡,王辉,王英,肖方明,朱敏,孙泰. 预歧化处理的高性能锂离子电池SiO/C负极材料*[J]. 材料导报编辑部, 2017, 31(10): 11-15.
[14] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed