Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 1-10    https://doi.org/10.11896/j.issn.1005-023X.2017.011.001
  材料综述 |
新一代高比能量锂离子电池富锂氧化物正极材料的研究进展*
杨时峰1,2, 任文锋1, 陈剑1
1 中国科学院大连化学物理研究所先进二次电池研究组, 大连 116023;
2 中国科学院大学 北京 100049
Li-rich Oxides Cathode Materials: Towards a New Generation of Lithium-ion Batteries with High Energy Density
YANG Shifeng1,2, REN Wenfeng1, CHEN Jian1
1 Advanced Rechargeable Battery Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023;
2 University of Chinese Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 1865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富锂氧化物xLi2MnO3·(1-x)LiMO2(M为Co、Ni、Mn等)的比容量可达250~300 mAh/g,是高比能量锂离子电池正极材料的首选之一。介绍了材料的晶体结构、嵌/脱锂机制和充放电过程中发生的结构相变,分析讨论了材料出现首次不可逆容量大、电压和容量衰减快、倍率性能和低温性能较差等问题的原因,阐述了材料的合成方法及改性技术,如表面包覆、离子掺杂、形貌和晶面调控以及合成层状相-尖晶石相共生结构的异质材料等。最后从基础研究和应用研究两个方面展望了富锂氧化物材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨时峰
任文锋
陈剑
关键词:  锂离子电池  高比容量正极材料  富锂氧化物    
Abstract: Li-rich oxides xLi2 MnO3·(1-x)LiMO2(M=Co, Ni or Mn) with specific capacity of 250—300 mAh/g are pro-mising candidates cathode materials for high specific energy density lithium-ion batteries. In this review, the crystal structure, lithium insertion/extraction mechanism, and structural transformation of Li-rich oxide during the charge-discharge processes are introduced. The issues encountered by the material including the large initial irreversible capacity, fast voltage and capacity fading, as well as the inferior rate capability and low-temperature performance are also illustrated and discussed. Then, the synthesis and modification methods including surface coating, ion doping, morphology and crystal plane control, as well as the fabrication of lamellar phase-spinel intergrown structure for the materials are described. At last, from the view of both basic and applied research, the prospects of future development for Li-rich oxides cathode material are proposed.
Key words:  lithium-ion battery    high capacity cathode material    Li-rich oxide
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  O646  
  TM912  
基金资助: 国家高技术研究发展计划(863计划)(2013AA050901)
通讯作者:  陈剑:通讯作者,女,1968年生,博士研究生导师,主要从事先进二次电池关键材料和器件的研究 E-mail: chenjian@dicp.ac.cn   
作者简介:  杨时峰:女,1987年生,博士研究生,主要从事高比能锂离子电池用正极材料的研究 E-mail: shifengy1987@163.com
引用本文:    
杨时峰, 任文锋, 陈剑. 新一代高比能量锂离子电池富锂氧化物正极材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 1-10.
YANG Shifeng, REN Wenfeng, CHEN Jian. Li-rich Oxides Cathode Materials: Towards a New Generation of Lithium-ion Batteries with High Energy Density. Materials Reports, 2017, 31(11): 1-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.001  或          http://www.mater-rep.com/CN/Y2017/V31/I11/1
1 Jarvis K A, Deng Z Q, Allard L F, et al. Atomic structure of a li-thium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution[J]. Chem Mater,2011,23(16):3614.
2 Yu H J, Zhou H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J].J Phys Chem Lett,2013, 4(8):1268.
3 Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem,2007,17(30):3112.
4 Lu Z H, Chen Z H, Dahn J R. Lack of cation clustering in Li-[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 (0≤ x≤1/2) and Li[Crx Li(1-x)/3-Mn(2-2x/3]O2 (0 <x < 1)[J]. Chem Mater,2003(15):3214.
5 Thackeray M M, Kang S H, Johnson C S, et al. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochem Commun,2006,8(9):1531.
6 Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structural properties of xLi2M′O3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M′= Ti, Mn, Zr; 0≤x≤0.3)[J]. Chem Mater,2004,16(16):1996.
7 Balasubramanian M, McBreen J, Davidson I J, et al. In situ X-ray absorption study of a layered manganese-chromium oxide-based ca-thode material[J].J Electrochem Soc,2002,149(2):A176.
8 Barenño J, Balasubramanian M, Kang S H, et al. Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2[J]. Chem Mater,2011,23(8):2039.
9 Yoon W S, Kim N, Yang X Q, et al. 6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides[J]. J Power Sources,2003,119-121:649.
10 Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/-Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J].J Electrochem Soc,2002,149(7):A815.
11 Kang S H, Sun Y K, Amine K. Electrochemical and ex situ X-ray study of Li(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries[J]. Electrochem Solid-State Lett,2003,6(9):A183.
12 Hy S, Su W N, Chen J M, et al. Soft X-ray absorption spectrosco-pic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries[J]. J Phys Chem C,2012,116(48):25242.
13 Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc,2006,128(26):8694.
14 Hy S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3-Mn(2-x)/3]O2 (0≤x≤0.5) [J]. J Am Chem Soc,2014,136(3):999.
15 Koyama Y, Tanaka I, et al. First-principles study on lithium remo-val from Li2MnO3[J]. J Power Sources,2009, 189(1):798.
16 Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3[J]. Chem Mater,2003,15(10):1984.
17 Robertson A D, Bruce P G. Overcapacity of LiNixLi(1/3-2x/3)-Mn(2/3-x/3)O2 electrodes[J]. Electrochem Solid-State Lett, 2004,7(9):A294.
18 Johnson C S, Li N, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50 ℃[J]. Electrochem Commun,2007,9(4):787.
19 Ohzuku T, Nagayama M, Tsuji K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mAh ·g-1[J]. J Mater Chem,2011, 21(27):10179.
20 Koga H, Croguennec L, Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13-Ni0.13O2[J]. J Electrochem Soc,2013,160(6):A786.
21 Ito A, Sato Y, Sanada T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17-Li0.2Co0.07-Mn0.56]O2[J]. J Power Sources,2011,196(16):6828.
22 Sathiya M, Ramesha K, Rousse G, et al. High performance Li2Ru1-yMnyO3(0.2<y<0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding [J]. Chem Mater,2013,25(7):1121.
23 Yuge R, Toda A, Kuroshima S, et al. Charge compensation mechanism during cycles in Fe-containing Li2MnO3 cathode for high energy density and low-cost lithium-ion batteries[J]. Electrochim Acta,2016,189:166.
24 Han S J, Xia Y, Wei Z, et al. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge[J]. J Mater Chem A,2015,3(22):11930.
25 Bo Xu, Christopher R Fell, Miaofang Chic, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy Environ Sci,2011,4(6):2223.
26 Mohanty D, Li J L, Abraham D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion[J]. Chem Mater,2014,26(21):6272.
27 Boulineau A, Simonin L, Colin J F, et al. Evolutions of Li1.2Mn0.61-Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy[J]. Chem Mater,2012,24(18):3558.
28 Lim J M, Kim D, Lim Y G, et al. The origins and mechanism of phase transformation in bulk Li2MnO3: First-principles calculations and experimental studies[J]. J Mater Chem A,2015,3(13):7066.
29 Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2 -Li2MnO3[J]. Solid State Ionics,1999,117:257.
30 Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano,2013,7(1):760.
31 Zheng J M, Xu P H, Gu M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chem Mater,2015,27(4):1381.
32 Zheng J M, Wu X B, Yang Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2-Mn0.54Ni0.13Co0.13]O2 for lithium ion battery[J]. Electrochim Acta,2011,56(8):3071.
33 Zheng J, Gu M, Xiao J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Lett,2013,13(8):3824.
34 Xiao R J, Li H, Chen L Q. Density functional investigation on Li2MnO3[J]. Chem Mater,2012,24(21):4242.
35 Yu C, Wang H, Guan X F, et al. Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 -(x=0.1,0.2,0.3,0.4) at different temperatures[J]. J Alloys Compd,2013,546:239.
36 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater,2002,1(2):123.
37 Liu J L, Chen L, et al. General synthesis of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries[J]. J Mater Chem, 2012,22(48):25380.
38 Gu M, Belharouak I, Genc A, et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries[J]. Nano Lett,2012,12(10):5186.
39 Gu M, Genc A, Belharouak I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries[J]. Chem Mater,2013,25(11):2319.
40 Koenig G M, Belharouak I, Deng H X, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials[J]. Chem Mater,2011,23(7):1954.
41 Wang D P, Belharouak I, Koenig G M, et al. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes[J]. J Mater Chem,2011,21(25):9290.
42 Liu J,Manthiram A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. J Mater Chem,2010,20(19):3961.
43 Singh G, Thomas R, Kumar A, et al. Electrochemical and structu-ral investigations on ZnO treated 0.5 Li2MnO3-0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery[J]. J Electrochem Soc,2012, 159(4):A470.
44 Zou G S, Yang X K, Wang X Y, et al. Improvement of electroche-mical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3[J]. J Solid State Electrochem,2014,18(7):1789.
45 Kang S H,Thackeray M M. Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment[J]. Electrochem Commun,2009,11(4):748.
46 Liu H, Chen C, Du C Y, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54-O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries[J]. J Mater Chem A,2015,3(6):2634.
47 Zheng J M, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials[J]. Chem Mater,2014,26(22):6320.
48 Liu X Y, Liu J L, Huang T, et al. CaF2-coated Li1.2Mn0.54Ni0.13-Co0.13O2 as cathode materials for Li-ion batteries[J]. Electrochim Acta,2013,109:52.
49 Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. J Electrochem Soc,2008,155(10): A775.
50 Song B H, Liu H W, Liu Z W, et al. High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J]. Sci Rep,2013,3:1.
51 Kim I T, Knight J C, et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating[J]. J Mater Chem A,2014,2(23):8696.
52 Martha S K, Nanda J, et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175-Co0.1O2[J]. J Power Sources,2012,199:220.
53 Yang S Y, Huang G, Hu S J, et al. Improved electrochemical performance of the Li1.2-Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries[J]. Mater Lett,2014,118:8.
54 Gao J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for li-thium ion batteries[J]. Electrochem Commun,2009,11(1):84.
55 Park K S, Benayad A, Park M S, et al. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VOx-impregnated 0.5Li2MnO3-0.5LiNi0.4Co0.2Mn0.4O2 cathode[J]. Chem Commun,2010,46(23):4190.
56 Wang F X, Xiao S Y, Li M X, et al. A nanocomposite of Li2MnO3 coated by FePO4 as cathode material for lithium ion batteries[J]. J Power Sources,2015,287:416.
57 Sohn K S, Han S C, Park W B, et al. Critical parameters governing energy density of Li-storage cathode materials unraveled by confir-matory factor analysis [J]. J Power Sources,2016,307:368.
58 Shi S J, Tu J P, Zhang Y J, et al. Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J]. Electrochim Acta,2013,108:441.
59 Sun Y K, Lee M J, Yoon C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Adv Mater,2012,24(9):1192.
60 Wu F, Zhang X X, Zhao T L, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1-Ni0.15Mn.55]O2 cathode materials for lithium-ion batteries[J]. ACS Appl Mater Interfaces,2015,7(6):3773.
61 Lee S H, Koo B K, Kim J C, et al. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechar-geable batteries[J]. J Power Sources,2008,184(1):276.
62 Zhang H L, Song T F. Synthesis and performance of fluorine substituted Li1.05(Ni0.5Mn0.5)0.95O2-xFx cathode materials modified by surface coating with FePO4[J]. Electrochim Acta,2013,114:116.
63 Xu G F, Li J L, Xue Q R, et al. Elevated electrochemical perfor-mance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3-O2 cathode material via a novel wet coating method[J]. J Electrochim Acta,2014,117:41.
64 Liu H, Du C Y, Yin G P, et al. An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries[J]. J Mater Chem A,2014,2(37):15640.
65 Cong L N, Gao X G, Ma S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12[J]. Electrochim Acta,2014,115:399.
66 Zhang X P, Sun S W, Wu Q, et al. Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification[J]. J Power Sources,2015,282:378.
67 Feng X, Yang Z, Tang D, et al. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4[J]. Phys Chem Chem Phys,2015,17(2):1257.
68 Huang X, Qiao Q Q, Sun Y Y, et al. Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2[J]. J Solid State Electrochem,2014,19(3):805.
69 Wu F, Li N, Su Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries[J]. Nano Lett,2014,14(6):3550.
70 Qiao Q Q, Zhang H Z, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the ca-thode for lithium-ion batteries[J]. J Mater Chem A,2013,1(17):5262.
71 Martha S K, Nanda J, Kim Y, et al. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525-Ni0.175Co0.1O2[J]. J Mater Chem A,2013,1(18):5587.
72 Singh G, Thomas R, et al. Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode Materials[J]. J Electrochem Soc,2012,159(4):A410.
73 He W, Yuan D D, Qian J F, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13-Mn0.54]O2 cathode material[J]. J Mater Chem A,2013,1(37):11397.
74 Song B H, Zhou C F, Wang H L, et al. Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries[J]. J Electrochem Soc,2014,161(10):A1723.
75 Li Q, Li G S, Fu C C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for li-thium-ion batteries[J]. ACS Appl Mater Interfaces,2014,6(13):10330.
76 Lim S N, Seo J Y, Jung D S, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F[J]. J Electroanal Chem,2015,740:88.
77 Li B, Yan H J, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: Towards better electrochemical performance[J]. Adv Funct Mater,2014,24(32):5112.
78 Zhang H Z, Qiao Q Q, Li G R, et al. PO43- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced li-thium-ion batteries[J]. J Mater Chem A,2014,2(20):7454.
79 Li L, Song B H, Chang Y L, et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J Power Sources,2015,283:162.
80 Deng Z Q,Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide ca-thodes[J]. J Phys Chem C,2011,115(14):7097.
81 Song B H, Lai M O, Lu L. Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batte-ries[J]. Electrochim Acta,2012,80:187.
82 Wang H L, Tan T A, Yang P, et al. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: Effects of doping and particle size[J]. J Phys Chem C,2011,115(13):6102.
83 Wu Y, Manthiram A. Effect of Al3+ and F- doping on the irreversible oxygen loss from layered Li[Li0.17Mn0.58Ni0.25]O2 cathodes[J]. Electrochem Solid-State Lett,2007,10(6):A151.
84 Zhang L J, Wu B R, Li N, et al. Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries[J]. Electrochim Acta,2014,118:67.
85 Shi S J, Lou Z R, Xia T F, et al. Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for li-thium ion batteries[J]. J Power Sources,2014,257:198.
86 Shi S J, Mai Y J, Tang Y Y, et al. Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials[J]. Electrochim Acta,2012,77:39.
87 Jiang Y, Yang Z, Luo W, et al. Hollow 0.3Li2MnO3-0.7LiNi0.5-Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries[J]. Phys Chem Chem Phys,2013,15(8):2954.
88 Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J]. Chem Commun,2009,2(2):218.
89 Cho J, Kim Y, Kim M G. Synthesis and characterization of Li-[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode[J]. J Phys Chem C,2007,111(7):3192.
90 Wei G Z, Lu X, Ke F S, et al. Crystal habit-tuned nanoplate mate-rial of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium ion batteries[J]. Adv Mater,2010,22(39):4364.
91 Oh P, Myeong S, Cho W, et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials[J]. Nano Lett,2014,14(10):5965.
92 Johnson C S, Li N, Vaughey J T, et al. Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1-x)Li1+yMn2-yO4 (0<x<1, 0<y<0.33) for lithium batteries[J]. Electrochem Commun,2005,7(5):528.
93 Cabana J, Montserrat C C, Omenya F O, et al. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5-Mn1.5O4[J]. Chem Mater,2012,24:2952
94 Zhao T, Chen S, Chen R, et al. The positive roles of integrated la-yered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries[J]. ACS Appl Mater Interfaces,2014, 6(23):21711.
95 Wu F, Li N, Su Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries[J]. Adv Mater,2013,25(27):3722.
96 Wang D, Wang X Y, Yu R Z, et al. The control and performance of Li4Mn5O12 and Li2MnO3 phase ratios in the lithium-rich cathode materials[J]. Electrochim Acta,2016,190:1142.
97 Bian X F, Fu Q, Qiu H L, et al. High-performance Li(Li0.18Ni0.15-Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer[J]. Chem Mater,2015,27(16): 5745.
98 Choi M, Ham G, Jin B S, et al. Ultra-thin Al2O3 coating on the acid-treated 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2electrode for Li-ion batteries[J]. J Alloys Compd,2014,608:110.
99 Wei Z, Zhang W, Wang F, et al. Eliminating voltage decay of li-thium-rich Li1.14 Mn0.54 Ni0.14Co0.14 O2 cathodes by controlling the electrochemical process[J]. Chem Eur J,2015,21:1.
100 Qiu B, Zhang M H, Wu L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nat Commun,2016,7:12108
101 Kim D, Lim J M, Lim Y G, et al. Understanding of surface redox behaviors of Li2MnO3 in Li-ion batteries: First-principles prediction and experimental validation[J]. Chem Sustain Chem,2015,8(19):3255.
102 Huang Y L, Hou X H, Ma S M, et al. Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: Towards high performance cathodes for lithium ion batteries[J]. RSC Adv,2015,5(32):25258.
103 Gao Y R, Wang X F, Ma J, et al. Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations[J]. Chem Mater,2015,27(9):3456.
104 Hy S, Liu H D, et al. Performance and design consi-derations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J]. Energy Environ Sci,2016,9(6):1931.
105 Park K S, Im D, Benayad A, et al. LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety[J]. Chem Mater,2012,24(14):2673.
106 Hu X, Zhang W, Liu X, et al. Nanostructured Mo-based electrode materials for electrochemical energy storage[J]. Chem Soc Rev,2015,44(8):2376.
107 Todorova V, Jansen M. Synthesis, structural characterization and physical properties of a new member of ternary lithium layered compounds-Li2RhO3[J]. Z Anorg Allg Chem,2011,637(1):37.
108 Dupré N, Cuisinier M, Legall E, et al. Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase[J]. J Power Sources,2015,299:231.
109 Chen Y H, Huo M, Song L J, et al. Electrical and lithium ion dynamics in Li2IrO3 from density functional theory study[J]. RSC Adv,2014,4(80):42462.
110 Lyu Y C, Zhao N J, Hu E Y, et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0-4.8 V[J]. Chem Mater,2015,27(15):5238.
111 Zhao Y J, Xia M H, Hu X S, et al. Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials[J]. Electrochim Acta,2015,174:1167.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[4] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[5] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[6] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[13] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed