Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 16-20    https://doi.org/10.11896/j.issn.1005-023X.2017.016.004
  材料研究 |
用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*
李文超1,2,3, 王英2,3, 唐仁衡2,3, 夏文明2,3, 肖方明2,3, 王华昆1, 黄玲2,3, 孙泰2,3
1 昆明理工大学材料科学与工程学院,昆明650093;
2 广东省稀土开发及应用重点实验室, 广州 510650;
3 广东省稀有金属研究所,广州510650
A High-performance SiOx/C/graphene Composite Anode for Lithium Ion Batteries
LI Wenchao1,2,3, WANG Ying2,3, TANG Renheng2,3, XIA Wenming2,3, XIAO Fangming2,3, WANG Huakun1, HUANG Ling2,3, SUN Tai2,3
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangzhou 510650;
3 Guangdong Research Institute of Rare Metals, Guangzhou 510650
下载:  全 文 ( PDF ) ( 1811KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以SiO、丁苯橡胶(SBR)及石墨烯为原料,通过高温歧化、机械球磨、喷雾干燥和高温热解制备电化学性能优异的锂离子电池SiOx/C/石墨烯复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、颗粒形貌及电化学性能等进行表征。结果表明,热解后的SiOx/C/石墨烯复合负极材料的首次放电容量为1 807 mAh/g,100次循环后,可逆容量高达1 349 mAh/g,库伦效率为99.1%,循环稳定性远高于SiOx/C和SiOx/C/graphene前驱体,具有良好的倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文超
王英
唐仁衡
夏文明
肖方明
王华昆
黄玲
孙泰
关键词:  锂离子电池  SiOx/C/石墨烯负极材料  高温热解  循环性能    
Abstract: A SiOx/C/graphene composite anode for lithium ion batteries with excellent electrochemical performance was prepared from SiO, SBR and graphene via the disproportionation treatment of SiO at high temperature, mechanical milling, spray drying and pyrolysis. The phase composition, morphology and electrochemical performance of the composites were detected by X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy disperse spectroscopy (EDS) and constant current charge-discharge test. The electrochemical test results revealed that the initial discharge capacity of pyrolytic SiOx/C/graphene composite anode material was 1 807 mAh/g. The reversible capacity reached 1 349 mAh/g and the Coulombic efficiency was 99.1% after 100 cycles, indicating a much higher cyclic stability compared to the SiOx/C and SiOx/C/graphene precursors, along with a good rate performance.
Key words:  lithium-ion battery    SiOx/C/graphene anode material    high-temperature pyrolysis    cyclic performance
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TM912.9  
基金资助: 广东省自然科学基金(2014A030308015); 广东省省级科技计划项目(2015B010116002)
通讯作者:  王英:通讯作者,女,1971年生,硕士,教授级高级工程师,研究方向为电池材料 E-mail:wy2228086@163.com   
作者简介:  李文超:男,1992年生,硕士研究生,研究方向为锂离子电池材料 E-mail:1141689502@qq.com
引用本文:    
李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
LI Wenchao, WANG Ying, TANG Renheng, XIA Wenming, XIAO Fangming, WANG Huakun, HUANG Ling, SUN Tai. A High-performance SiOx/C/graphene Composite Anode for Lithium Ion Batteries. Materials Reports, 2017, 31(16): 16-20.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.004  或          http://www.mater-rep.com/CN/Y2017/V31/I16/16
1 Kasavajjula U, Wang C, Appleby A J.Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. J Power Sources,2007,163(2):1003.
2 Mohri M, Yanagisawa N, Tajimay Y, et al.Rechargeable lithium battery based on pyrolytic carbon as a negative electrode[J]. J Po-wer Sources,1989,26(3-4):545.
3 Fan Yanwei, Zhou Bukang, Wang Junhua, et al.Preparation and thermal-sensitive characteristic of copper doped n-type silicon mate-rial[J]. J Semicond,2015,36(1):013004.
4 Yin J, Wada M, Yamamoto K, et al.Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries[J]. J Electrochem Soc,2006,153(3):A472.
5 MiyachiI M, Yamamoto H, Kawai H, et al.Analysis of SiO anodes for lithium-ion batteries[J]. J Electrochem Soc,2005,152(10):4803.
6 Yang J, Takeda Y, Imanishi N, et al.SiOx-based anodes for secon-dary lithium batteries[J]. Solid State Ionics,2002,52(12):125.
7 Doh C H, Shin H M, Kim D S H, et al.Improved anode perfor-mance of thermally treated SiO/C composite with an organic solution mixture[J]. Electrochem Commun,2008,10(2):233.
8 Gauthier M, Mazouzi D, Reyter D, et al.A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries[J]. Energy Environ Science,2013,6(7):2145.
9 Li M, Zeng Y, Ren Y, et al.Fabrication and lithium storage perfor-mance of sugar apple-shaped SiOx @C nanocomposite spheres[J]. J Power Sources,2015,288:53.
10 Shi Changchuan, Yang Xuelin, Zhang Lulu, et al. High-perfor-mance SiO/C/G composite anode for lithium ion batteries[J]. J Ino-rg Mater,2013,28(9):943(in Chinese).
石长川,杨学林,张露露,等.高性能锂离子电池SiO/C/G复合负极材料研究[J]. 无机材料学报,2013,28(9):943.
11 Morita T, Takami N.Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J]. J Electrochem Soc,2006,153(2):A425.
12 Park C M, Choi W, Hwa Y, et al.Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. J Mater Chem,2010,20(23):4854.
13 Hwa Y, Park C M, Sohn H J.Modified SiO as a high performance anode for Li-ion batteries[J]. J Power Sources,2013,222(2):129.
14 Lv P, Zhao H, Gao C, et al.Highly efficient and scalable synthesis of SiOx /C composite with core-shell nanostructure as high-perfor-mance anode material for lithium ion batteries[J]. Electrochim Acta,2015,152:345.
15 Meng J, Cao Y, Suo Y, et al.Facile fabrication of 3D SiO2 @graphene aerogel composites as anode material for lithium ion batteries[J]. Electrochim Acta,2015,176:1001.
16 Cao Zhidong, Yu Yingchun, Xiong Yong,et al. Study of thermal decomposed carbon materials used as anode of lithium-ion secondary battery[J]. J Fudan Univ: Nat Sci,1999,38(1):93(in Chinese).
曹志东,余晴春,熊勇,等.锂离子电池负极热解碳材料的研究[J]. 复旦学报:自然科学版,1999,38(1):93.
17 Kim K W, Park H, Lee J G, et al.Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries[J]. Electrochim Acta,2013,103(8):226.
18 Chen X, Li X, Ding F, et al.Conductive rigid skeleton supported si-licon as high-performance Li-ion battery anodes[J]. Nano Lett,2012,12(8):4124.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[4] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[5] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[6] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 李严, 王欣, 黄金田. 沙柳活性炭纤维改性及其对铅离子的吸附性能[J]. 《材料导报》期刊社, 2018, 32(14): 2360-2365.
[13] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[14] 李祥,郑峰,罗援,罗泳梅. 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 《材料导报》期刊社, 2018, 32(12): 1949-1954.
[15] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed