Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23030169-7    https://doi.org/10.11896/cldb.23030169
  无机非金属及其复合材料 |
高能量密度18650型锂离子电池制造生命周期评价
郑永泉1, 刘亚宁1, 王国光2, 张文魁1, 颜旖旎1, 董江群2, 包大新2, 夏阳1,*
1 浙江工业大学材料科学与工程学院,杭州 310014
2 横店集团东磁股份有限公司,浙江 东阳 322118
Life Cycle Assessment of the Manufacturing Process of High Energy Density 18650-type Lithium-ion Batteries
ZHENG Yongquan1, LIU Yaning1, WANG Guoguang2, ZHANG Wenkui1, YAN Yini1, DONG Jiangqun2, BAO Daxin2, XIA Yang1,*
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 Hengdian Group DMEGC Magnetics Co., Ltd., Dongyang 322118, Zhejiang, China
下载:  全 文 ( PDF ) ( 4970KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池具有能量密度高、循环寿命长、性价比高、环境影响小等优点,在消费类电子产品、规模化储能及新能源电动汽车等领域得到广泛应用,是实现我国“双碳”战略的重要技术支撑。本文介绍了高能量密度18650型锂离子电池生产制造过程,采用Simapro软件对某企业生产的18650型锂离子电池产品进行了生命周期评价(Life cycle assessment,LCA)。研究结果表明,生产容量为1 kW·h的18650型锂离子电池的碳足迹为48.3 kg CO2 eq,环境指标分数为12.7 Pt;生产过程中产生的致癌物和可吸入无机物等对人类健康存在一定的潜在危害性;正极制备工艺过程和工业用电是导致碳排放和影响环境的主要环节;正极生产过程的正极材料(如Li(Ni0.83Co0.06Mn0.11)O2)和负极生产过程所用的电解铜箔集流体与石墨负极材料,以及注液过程所用的六氟磷酸锂电解液等材料的上游生产过程均是影响环境的主体因素。从全局和长远角度考虑,锂离子电池生产制造过程需进一步提高生产效率、节约能源和资源、减少污染物排放,使其与环境相互协调,达到可持续发展的目标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑永泉
刘亚宁
王国光
张文魁
颜旖旎
董江群
包大新
夏阳
关键词:  生命周期评价(LCA)  锂离子电池  碳足迹  足迹家族    
Abstract: Lithium-ion batteries with high energy density, long cycle life, remarkable cost effectivity and low environmental impact are widely applied in the fields of consumer electronics, large-scale energy storage and new energy electric vehicles, etc., which play important roles as a sort of clean energy to achieve the Carbon-peaking and Carbon-neutrality strategic goals. In this work, the manufacturing process of high energy density lithium-ion battery was briefly introduced for the life cycle assessment (LCA) of the 18650-type lithium-ion battery products by Simapro software. The LCA results indicate that the carbon footprint of a 18650-type lithium-ion battery with a production capacity of 1 kW·h is 48.3 kg CO2 eq, and the corresponding eco-indicator point is 12.7 Pt. The carcinogens and respirable inorganic substances produced in the production process will be hazardous to human health to a certain extent. The cathode preparation process and industrial electricity consumption are the main factors that lead to carbon emissions and affect the environment. The material's upstream production processes, such as the fabrication processes of layered oxide cathode materials (e.g. Li(Ni0.83Co0.06Mn0.11)O2), electrolytic copper foil collector and graphite anode materials, as well as lithium hexafluorophosphate electrolyte, are the main factors influencing the environment. From a comprehensive perspective, the manufacturing process of lithium-ion batteries needs to improve production efficiency further, save energy and resources, and reduce pollutant emissions, so as to coordinate with the environment and achieve the goal of sustainable development.
Key words:  life cycle assessment (LCA)    lithium-ion battery    carbon footprint    footprint family
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TM912  
基金资助: 浙江省“尖兵”“领雁”研发攻关计划项目(2022C01173)
通讯作者:  *夏阳,浙江工业大学材料科学与工程学院副教授、博士研究生导师。2013年浙江工业大学材料化学专业博士毕业后留校工作至今。主要从事二次电池关键材料和技术的基础理论和应用研究工作。发表论文190余篇,包括Adv. Energy Mater.、Adv. Funct. Mater.、ACS Nano、Small、J. Mater. Chem. A等。nanoshine@zjut.edu.cn   
作者简介:  郑永泉,2022年6月毕业于浙江工业大学材料科学与工程专业,获得工学学士学位。现为浙江工业大学材料科学与工程学院硕士研究生,在张文魁教授的指导下进行研究。目前主要研究领域为高比能电池材料与器件。
引用本文:    
郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
ZHENG Yongquan, LIU Yaning, WANG Guoguang, ZHANG Wenkui, YAN Yini, DONG Jiangqun, BAO Daxin, XIA Yang. Life Cycle Assessment of the Manufacturing Process of High Energy Density 18650-type Lithium-ion Batteries. Materials Reports, 2024, 38(21): 23030169-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030169  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23030169
1 Lyu F. Synthesis and performance optimization of Ni-rich layered cathode materials for lithium-ion batteries. Ph.D. Thesis, Henan University, China, 2022 (in Chinese).
吕菲. 锂离子电池高镍层状正极材料的制备与性能优化研究. 博士学位论文, 河南大学, 2022.
2 Zhai X H, Zhang P P, Zhou J F, et al. Materials Reports, 2021, 35(7), 7056 (in Chinese).
翟鑫华, 张盼盼, 周建峰, 等.材料导报, 2021, 35(7), 7056.
3 Myung S T, Maglia F, Park K J, et al. ACS Energy Letters, 2017, 2, 196.
4 Xie H L, Zhao Q Y, ZhangT A, et al. Material Reports, 2022, 36(S1),324 (in Chinese).
谢焕玲,赵秋月,张廷安,等.材料导报,2022,36(S1),324.
5 Wang Z J, Hu J D, Sha S M, et al. Chinese Journal of Power Sources, 2022, 46(8), 854 (in Chinese).
王泽晶, 吴建栋, 沙思淼, 等.电源技术, 2022, 46(8), 854.
6 Falcone M, Quattromini N F, Rossi C, et al. Batteries-Basel, 2022, 8, 76.
7 Tian Q H, Zou A L, Tong H, et al. Materials Reports, 2021, 35(1), 1011 (in Chinese).
田庆华, 邹艾玲, 童汇, 等.材料导报, 2021, 35(1), 1011.
8 Chen K, Li J, Qu D W, et al. Materials Reports, 2019, 33(S1), 53 (in Chinese).
陈坤, 李君, 曲大为, 等. 材料导报, 2019, 33(S1), 53.
9 Silvestri L, Forcina A, Arcese G, et al. Journal of Cleaner Production, 2020, 273, 123083.
10 Jiang S Y, Hua H, Zhang L, et al. Science of the Total Environment, 2022, 811, 152224.
11 Zhou S Y, He T, Fu T T, et al. Inorganic Chemicals Industry, 2023, 55(1), 25 (in Chinese).
周诗雨, 何婷, 付彤彤, 等. 无机盐工业, 2023, 55(1), 25.
12 Feng T, Guo W, Li Q, et al. Journal of Energy Storage, 2022, 52, 104767.
13 Yin X D, Zhang T, Zhang X C, et al. Material Reports, 2024, 38(2), 14(in Chinese).
尹啸笛,张涛,张新春,等.材料导报,2024,38(2),14.
14 Zhang Y, Wang H, Liu C M, et al. Energy Storage Science and Technology, 2022, 11(6), 1693 (in Chinese).
张言, 王海, 刘朝孟, 等.储能科学与技术, 2022, 11(6), 1693.
15 Liang Y, Su J, Xi B, et al. Resources Conservation and Recycling, 2017, 117, 285.
16 Wu H, Gong Y, Yu Y, et al. Environmental Science and Pollution Research, 2019, 26, 36538.
17 Wang L, Hu J, Yu Y, et al. Journal of Cleaner Production, 2020, 276, 124244.
18 Yu Y, Chen B, Huang K, et al. International Journal of Environmental Research and Public Health, 2014, 11, 3185.
19 Yu Y J, Chen Y. Environmental Pollution & Control, 2010, 32(10), 15 (in Chinese).
郁亚娟, 陈妍.环境污染与防治, 2010, 32(10), 15.
20 Baumann M, Peters J F, Weil M, et al. Energy Technology, 2017, 5, 1071.
21 Chen Q, Lai X, Gu H, et al. Journal of Cleaner Production, 2022, 369, 133362.
22 Lai X, Chen Q, Tang X, et al. Etransportation, 2022, 12, 100169.
23 Wang C, Chen B, Yu Y, et al. Journal of Cleaner Production, 2017, 163, 241.
24 Genikomsakis K N, Ioakimidis C S, Murillo A, et al. In: Conference Record of the 2013 27th International World Electric Vehicle Symposium and Exhibition. Barcelona, 2013, pp. 11.
25 Ioakimidis C S, Murillo-Marrodan A, Bagheri A, et al. Sustainability, 2019, 11, 2527.
26 Helias A. Science of the Total Environment, 2022, 709, 136189.
27 Lee S J, Hawkins T R, Ingwersen W W, et al. Journal of Industrial Eco-logy, 2015, 19, 416.
28 Wang L, Wu H, Hu Y, et al. Processes, 2019, 7, 83.
29 Gong Y, Yu Y J, Huang K, et al. Environmental Chemistry, 2016, 35(6), 1103 (in Chinese).
弓原, 郁亚娟, 黄凯, 等.环境化学, 2016, 35(6), 1103.
30 Wang Q L, Li W, Gao X, et al. Bioresource Technology, 2016, 201, 208.
31 Baustert P, Igos E, Schaubroeck T, et al. Journal of Industrial Ecology, 2022, 26, 1182.
32 Fang K. Acta Ecologica Sinica, 2016, 36, 7228.
33 Dreyer L C, Niemann A L, Hauschild M Z. International Journal of Life Cycle Assessment, 2003, 8(4), 191.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[3] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[4] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[5] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[6] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[7] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[8] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[9] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[10] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[11] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[12] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[13] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[14] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[15] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed