Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23040102-11    https://doi.org/10.11896/cldb.23040102
  无机非金属及其复合材料 |
氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展
赵登婕1,2, 李康宁1,2, 胡李纳1,2, 闫彤1,2, 杨艳坤1,2, 郝阳1,2, 张晨曦1,2,*, 郝玉英1,2,*
1 太原理工大学物理与光电工程学院, 新型传感与智能控制教育部重点实验室,太原 030024
2 山西浙大新材料与化工研究院,太原 030000
Research Progress of Tin Oxide Electron Transport Layer in n-i-p Perovskite Solar Cells
ZHAO Dengjie1,2, LI Kangning1,2, HU Lina1,2, YAN Tong1,2, YANG Yankun1,2, HAO Yang1,2, ZHANG Chenxi1,2,*, HAO Yuying1,2,*
1 College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
下载:  全 文 ( PDF ) ( 6567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,钙钛矿太阳能电池(Perovskite solar cells, PSCs)由于具有光伏性能优异、材料成本低、制造工艺简单等优势,引起了科研工作者广泛的研究兴趣。在PSCs中,电子传输层(Electron transport layer, ETL)在提取和传输光生电子方面起着至关重要的作用。氧化锡(SnO2)由于具有高光学透过率、高电子迁移率、良好的化学稳定性、合理的能级结构和可低温制备等优异性能,成为PSCs器件中理想的ETL。本文围绕SnO2 ETL在正置PSCs中的研究进展进行综述,首先介绍了SnO2的结构与光电特性,并归纳了SnO2的制备方法,随后对有机无机杂化PSCs及全无机PSCs中SnO2 ETL的改性进行了详细的阐述和总结,包括掺杂及界面修饰处理,最后总结全文,对SnO2 ETL的发展进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵登婕
李康宁
胡李纳
闫彤
杨艳坤
郝阳
张晨曦
郝玉英
关键词:  氧化锡  有机无机杂化  全无机  钙钛矿太阳能电池  掺杂  界面修饰    
Abstract: In recent years, perovskite solar cells (PSCs) have attracted extensive research interest due to their excellent photovoltaic performance, low material cost and simple fabrication process. In PSCs, the electron transport layer (ETL) plays a crucial role in extracting and transporting photogenerated electrons from the perovskite layer to the cathode. Due to its high optical transmittance, high electron mobility, good chemical stability, good match with the energy level structure of the perovskite layer and the ability to be prepared at low temperatures, tin oxide (SnO2) has become an ideal ETL for PSCs. This paper reviews the research progress of SnO2 ETL in n-i-p PSCs, firstly, it introduces the structure and photoelectric characteristics of SnO2, and summarizes the preparation methods of SnO2. And then, the modification of SnO2 ETL in organic-inorganic hybrid PSCs and all-inorganic PSCs is elaborated and summarized in detail, including doping and interface modification. Finally, the full text is summarized and the development of SnO2 ETL is prospected.
Key words:  tin oxide    organic-inorganic hybrid    all-inorganic    perovskite solar cells (PSCs)    doping    interface modification
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TM914  
基金资助: 国家自然科学基金(62074108);国家自然科学基金区域创新与发展联合基金(U21A20102);山西浙大先进材料与化工研究院基金(2022SX-TD019);山西省科技重大专项(20201101012);山西省平台与基地专项(201605D131038);山西省基础研究计划(20210302124629;20210302124163;20210302124392)
通讯作者:  *张晨曦,太原理工大学物理与光电工程学院讲师。2013年太原理工大学化工系化学工程与工艺专业本科毕业,2019年华东师范大学物理系材料与光电子专业博士毕业后到太原理工大学工作至今。目前主要从事钙钛矿材料、新型光电器件等方面的研究工作。发表论文20余篇,包括Advanced Functional Materials、Journal of Materials Che-mistry C、Electrochimica Acta、Nanoscale、Nano-Micro Letters等。zhangchenxi@tyut.edu.cn;郝玉英,太原理工大学物理与光电工程学院教授、博士研究生导师。2006年毕业于太原理工大学,获博士学位。先后主持国家级自然科学基金、山西省重点研发计划等项目10余项,获山西省科学技术奖技术发明二等奖1项,山西省科学技术奖自然科学二等奖1项。目前主要从事钙钛矿/有机太阳能电池优化制备与性能等方面的研究工作。在Advanced Materials、Journal of Materials Che-mistry A、Small、Journal of Materials Chemistry C、ACS Applied Materials & Interfaces、Solar Energy Materials & Solar Cells等国内外高水平学术期刊上发表学术论文60余篇。haoyuying@tyut.edu.cn   
作者简介:  赵登婕,2018年于山西大同大学获得学士学位。现为太原理工大学物理与光电工程学院博士研究生,在郝玉英教授的指导下进行研究。目前主要研究领域为钙钛矿太阳能电池。
引用本文:    
赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
ZHAO Dengjie, LI Kangning, HU Lina, YAN Tong, YANG Yankun, HAO Yang, ZHANG Chenxi, HAO Yuying. Research Progress of Tin Oxide Electron Transport Layer in n-i-p Perovskite Solar Cells. Materials Reports, 2024, 38(21): 23040102-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040102  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23040102
1 Jeon N J, Noh J H, Kim Y C, et al. Nature Materials, 2014, 13(9), 897.
2 Yang S, Dai J, Yu Z, et al. Journal of the American Chemical Society, 2019, 141(14), 5781.
3 Saliba M, Matsui T, Domanski K, et al. Science, 2016, 354(6309), 206.
4 Bu T, Li J, Li H, et al. Science, 2021, 372(6548), 1327.
5 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
6 Kim H S, Lee C R, Im J H, et al. Scientific Reports, 2012, 2, 591.
7 https:∥www.nrel.gov/pv/cell-efficiency.html(accessed on 10 April 2023).
8 Vasilopoulou M, Soultati A, Filippatos P P, et al. Journal of Materials Chemistry C, 2022, 10(31), 11063.
9 Jia S, Wang H, Cheng T, et al. Journal of Alloys and Compounds, 2022, 898, 162837.
10 Dong J, Jia J, Shi B, et al. Surfaces and Interfaces, 2022, 29, 101761.
11 Mo H, Wang D, Chen Q, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15141.
12 Yuan Q, Tang X, Shu Q, et al. Chemical Engineering Journal, 2022, 435, 134760.
13 Kouki H, Pitié S, Torkhani A, et al. ACS Applied Energy Materials, 2022, 5(2), 1635.
14 Pang Z, Yang S, Sun Y, et al. Chemical Engineering Journal, 2022, 439, 135701.
15 Liu G, Zhong Y, Mao H, et al. Chemical Engineering Journal, 2022, 431, 134235.
16 Jiang Q, Zhang L, Wang H, et al. Nature Energy, 2016, 2(1), 16177.
17 Zhang R, Fei C, Li B, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9785.
18 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356(6345), 1376.
19 Roose B, Baena J P C, Gödel K C, et al. Nano Energy, 2016, 30, 517.
20 Nam J, Kim J H, Kim C S, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12648.
21 Ke W, Fang G, Liu Q, et al. Journal of the American Chemical Society, 2015, 137(21), 6730.
22 Park J, Kim J, Yun H S, et al. Nature, 2023, 616, 724.
23 Batzill M. Sensors, 2006, 6(10), 1345.
24 Zhan W, Hu W, Hu L, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(10), 9989.
25 Leite E R, Weber I T, Longo E, et al. Advanced Materials, 2000, 12(13), 965.
26 Fukano T, Motohiro T. Solar Energy Materials & Solar Cells, 2004, 82(4), 567.
27 Consonni V, Rey G, Roussel H, et al. Acta Materialia, 2013, 61(1), 22.
28 Leem J W, Yu J S. Materials Science and Engineering: B, 2011, 176(15), 1207.
29 Wu S H. Study of transparent conductive SnO2-based and ZnO-based films. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2015 (in Chinese).
吴绍航. SnO2基与ZnO基透明导电薄膜的研究. 博士学位论文, 中国科学院大学, 2015.
30 Shi L, Lin H. Langmuir, 2011, 27(7), 3977.
31 Xiong L, Guo Y, Wen J, et al. Advanced Functional Materials, 2018, 28(35),1802757.
32 Song J, Zheng E, Wang X F, et al. Solar Energy Materials and Solar Cells, 2016, 144, 623.
33 Xiong L, Qin M, Chen C, et al. Advanced Functional Materials, 2018, 28(10),1706276.
34 Dong Q, Shi Y, Zhang C, et al. Nano Energy, 2017, 40, 336.
35 Murugadoss G, Kanda H, Tanaka S, et al. Journal of Power Sources, 2016, 307, 891.
36 Zhu Z, Bai Y, Liu X, et al. Advanced Materials, 2016, 28(30), 6478.
37 Kavan L, Steier L, Grätzel M. The Journal of Physical Chemistry C, 2017, 121(1), 342.
38 Hoffmann L, Brinkmann K O, Malerczyk J, et al. ACS Applied Materials & Interfaces, 2018, 10(6), 6006.
39 Correa B J P, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928.
40 Wang C, Zhao D, Grice C R, et al. Journal of Materials Chemistry A, 2016, 4(31), 12080.
41 Anaraki E H, Kermanpur A, Steier L, et al. Energy & Environmental Science, 2016, 9(10), 3128.
42 Barbe J, Tietze M L, Neophytou M, et al. ACS Applied Materials & Interfaces, 2017, 9(13), 11828.
43 Habisreutinger S N, Wenger B, Snaith H J, et al. ACS Energy Letters, 2017, 2(3), 622.
44 Ma J, Zheng X, Lei H, et al. Solar RRL, 2017, 1(10), 1700118.
45 Song Z, Bi W, Zhuang X, et al. Solar RRL, 2020, 4(2), 1900266.
46 Liu C, Zhang L, Zhou X, et al. Advanced Functional Materials, 2019, 29(47), 1807604.
47 Liu Q, Qin M C, Ke W J, et al. Advanced Functional Materials, 2016, 26(33), 6069.
48 Liu C, Huang K, Hu B, et al. Advanced Functional Materials, 2023, 33(22), 2212698.
49 Xiong Z, Lan L, Wang Y, et al. ACS Energy Letters, 2021, 6(11), 3824.
50 Park M, Kim J Y, Son H J, et al. Nano Energy, 2016, 26, 208.
51 Ren X, Yang D, Yang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2421.
52 Pang S, Zhang C, Zhang H, et al. Applied Surface Science, 2020, 507, 145099.
53 Bai Y, Fang Y, Deng Y, et al. ChemSusChem, 2016, 9(18), 2686.
54 Gao B, Cao Q, Pu X, et al. Applied Surface Science, 2021, 546, 148711.
55 Hoang V Q, Lee S K, Bark C W. Solar Energy, 2021, 230, 747.
56 Wang H, Yuan J, Xi J, et al. The Journal of Physical Chemistry Letters, 2021, 12(37), 9142.
57 Meng X, Deng J, Sun Q, et al. Journal of Colloid and Interface Science, 2022, 609, 547.
23040102-1058 Lv Z, He L, Jiang H, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16326.
59 Roose B, Johansen C M, Dupraz K, et al. Journal of Materials Chemistry A, 2018, 6(4), 1850.
60 Xiong L, Qin M, Yang G, et al. Journal of Materials Chemistry A, 2016, 4(21), 8374.
61 Zhu P, Gu S, Luo X, et al. Advanced Energy Materials, 2020, 10(3), 1903083.
62 Xie J, Huang K, Yu X, et al. ACS Nano, 2017, 11(9), 9176.
63 Chen J, Dong H, Zhang L, et al. Journal of Materials Chemistry A, 2020, 8(5), 2644.
64 Liu Z, Deng K, Hu J, et al. Angewandte Chemie International Edition, 2019, 58(33), 11497.
65 Ma H, Wang M, Wang Y, et al. Chemical Engineering Journal, 2022, 442, 136291.
66 Du J, Feng L, Guo X, et al. Journal of Power Sources, 2020, 455, 227974.
67 Xu P, He H, Ding J, et al. ACS Applied Energy Materials, 2021, 4(10), 10921.
68 Hu R, Hou W, Han G, et al. Materials Research Bulletin, 2022, 149, 111698.
69 Zuo X, Kim B, Liu B, et al. Chemical Engineering Journal, 2022, 431, 133209.
70 Zhang J, Fu J, Chen Q, et al. Chemical Engineering Journal, 2022, 433, 133744.
71 Bi H, Guo Y, Guo M, et al. Chemical Engineering Journal, 2022, 439, 135671.
72 Panigrahi S, Sk M, Jana S, et al. ACS Applied Energy Materials, 2022, 5(5), 5680.
73 Zhang H, Xu S, Guo T, et al. ACS Applied Materials & Interfaces, 2022, 14(25), 28826.
74 Xiong Z, Chen X, Zhang B, et al. Advanced Materials, 2022, 34(8), 2106118.
75 Zhang B, Oh J, Sun Z, et al. ACS Energy Letters, 2023, 8(4), 1848.
76 Wang Z, Wu T, Xiao L, et al. Journal of Power Sources, 2021, 488, 229451.
77 Zhang Y, Kong T, Xie H, et al. ACS Energy Letters, 2022, 7(3), 929.
78 Li S, Xia J, Liang C, et al. Chemical Engineering Journal, 2022, 442, 135895.
79 Hu B, Zhang J, Guo Z, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15840.
80 Bu T, Li J, Zheng F, et al. Nature Communications, 2018, 9(1), 4609.
81 Lin L, Jones T W, Wang J T, et al. Small, 2019, 16(12), 1901466.
82 Ma J, Yang G, Qin M, et al. Advanced Science (Weinh), 2017, 4(9), 1700031.
83 Wang P, Li R, Chen B, et al. Advanced Materials, 2020, 32(6), 1905766.
84 He Q, Zhang H, Han S, et al. ACS Applied Energy Materials, 2021, 4(10), 10958.
85 Gong X, Wang T, Yin G, et al. Journal of Materials Chemistry A, 2021, 9(45), 25567.
86 Zhang S, Gu H, Chen S C, et al. Journal of Materials Chemistry C, 2021, 9(12), 4240.
87 Guo R, Zhao Y, Zhang Y, et al. Energy & Environmental Materials, 2021, 4(4), 671.
88 Xie G, Lu X, Duan J, et al. Journal of Materials Chemistry A, 2021, 9(26), 15003.
89 Yao X, He B, Zhu J, et al. Nano Energy, 2022, 96, 107138.
90 Xing Y, Zhang H, Yan Z, et al. Energy & Fuels, 2022, 36(21), 13179.
91 Yan L, Xue Q, Liu M, et al. Advanced Materials, 2018, 30, 1802509.
92 He J, Su J, Ning Z, et al. ACS Applied Energy Materials, 2020, 3(6), 5173.
93 Deng F, Li X, Lv X, et al. ACS Applied Energy Materials, 2020, 3(1), 401.
94 Qi X, Wang J, Tan F, et al. ACS Applied Materials & Interfaces, 2021, 13(46), 55349.
95 Zhong H, Li W, Huang Y, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5183.
96 Li W, Cao D, Zhu X, et al. ACS Applied Energy Materials, 2023, 6(1), 191.
97 Zhao Y, Zhu J, He B, et al. ACS Applied Materials & Interfaces, 2021, 13(9), 11058.
98 Xu W, Gao Y, Kang F, et al. In: Conference Record of the 2021 IEEE 48th Photovoltaic Specialists Conference. Fort Lauderdale, 2021, pp. 1893.
99 Wang J, Wu X, Liu Y, et al. Energy Technology, 2021, 9(11), 2100562.
100 Guo Z, Teo S, Xu Z, et al. Journal of Materials Chemistry A, 2019, 7(3), 1227.
101 Zhou Q, Duan J, Wang Y, et al. Journal of Energy Chemistry, 2020, 50, 1.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[9] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[10] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[11] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[12] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[13] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[14] 叶梦煊, 谷雷雷, 张梅, 王倩倩. 混凝土表面喷涂类有机无机杂化抗碳化剂制备及性能[J]. 材料导报, 2024, 38(21): 23060104-7.
[15] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed