Research Progress of Tin Oxide Electron Transport Layer in n-i-p Perovskite Solar Cells
ZHAO Dengjie1,2, LI Kangning1,2, HU Lina1,2, YAN Tong1,2, YANG Yankun1,2, HAO Yang1,2, ZHANG Chenxi1,2,*, HAO Yuying1,2,*
1 College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China 2 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
Abstract: In recent years, perovskite solar cells (PSCs) have attracted extensive research interest due to their excellent photovoltaic performance, low material cost and simple fabrication process. In PSCs, the electron transport layer (ETL) plays a crucial role in extracting and transporting photogenerated electrons from the perovskite layer to the cathode. Due to its high optical transmittance, high electron mobility, good chemical stability, good match with the energy level structure of the perovskite layer and the ability to be prepared at low temperatures, tin oxide (SnO2) has become an ideal ETL for PSCs. This paper reviews the research progress of SnO2 ETL in n-i-p PSCs, firstly, it introduces the structure and photoelectric characteristics of SnO2, and summarizes the preparation methods of SnO2. And then, the modification of SnO2 ETL in organic-inorganic hybrid PSCs and all-inorganic PSCs is elaborated and summarized in detail, including doping and interface modification. Finally, the full text is summarized and the development of SnO2 ETL is prospected.
赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
ZHAO Dengjie, LI Kangning, HU Lina, YAN Tong, YANG Yankun, HAO Yang, ZHANG Chenxi, HAO Yuying. Research Progress of Tin Oxide Electron Transport Layer in n-i-p Perovskite Solar Cells. Materials Reports, 2024, 38(21): 23040102-11.
1 Jeon N J, Noh J H, Kim Y C, et al. Nature Materials, 2014, 13(9), 897. 2 Yang S, Dai J, Yu Z, et al. Journal of the American Chemical Society, 2019, 141(14), 5781. 3 Saliba M, Matsui T, Domanski K, et al. Science, 2016, 354(6309), 206. 4 Bu T, Li J, Li H, et al. Science, 2021, 372(6548), 1327. 5 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050. 6 Kim H S, Lee C R, Im J H, et al. Scientific Reports, 2012, 2, 591. 7 https:∥www.nrel.gov/pv/cell-efficiency.html(accessed on 10 April 2023). 8 Vasilopoulou M, Soultati A, Filippatos P P, et al. Journal of Materials Chemistry C, 2022, 10(31), 11063. 9 Jia S, Wang H, Cheng T, et al. Journal of Alloys and Compounds, 2022, 898, 162837. 10 Dong J, Jia J, Shi B, et al. Surfaces and Interfaces, 2022, 29, 101761. 11 Mo H, Wang D, Chen Q, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15141. 12 Yuan Q, Tang X, Shu Q, et al. Chemical Engineering Journal, 2022, 435, 134760. 13 Kouki H, Pitié S, Torkhani A, et al. ACS Applied Energy Materials, 2022, 5(2), 1635. 14 Pang Z, Yang S, Sun Y, et al. Chemical Engineering Journal, 2022, 439, 135701. 15 Liu G, Zhong Y, Mao H, et al. Chemical Engineering Journal, 2022, 431, 134235. 16 Jiang Q, Zhang L, Wang H, et al. Nature Energy, 2016, 2(1), 16177. 17 Zhang R, Fei C, Li B, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9785. 18 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356(6345), 1376. 19 Roose B, Baena J P C, Gödel K C, et al. Nano Energy, 2016, 30, 517. 20 Nam J, Kim J H, Kim C S, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12648. 21 Ke W, Fang G, Liu Q, et al. Journal of the American Chemical Society, 2015, 137(21), 6730. 22 Park J, Kim J, Yun H S, et al. Nature, 2023, 616, 724. 23 Batzill M. Sensors, 2006, 6(10), 1345. 24 Zhan W, Hu W, Hu L, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(10), 9989. 25 Leite E R, Weber I T, Longo E, et al. Advanced Materials, 2000, 12(13), 965. 26 Fukano T, Motohiro T. Solar Energy Materials & Solar Cells, 2004, 82(4), 567. 27 Consonni V, Rey G, Roussel H, et al. Acta Materialia, 2013, 61(1), 22. 28 Leem J W, Yu J S. Materials Science and Engineering: B, 2011, 176(15), 1207. 29 Wu S H. Study of transparent conductive SnO2-based and ZnO-based films. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2015 (in Chinese). 吴绍航. SnO2基与ZnO基透明导电薄膜的研究. 博士学位论文, 中国科学院大学, 2015. 30 Shi L, Lin H. Langmuir, 2011, 27(7), 3977. 31 Xiong L, Guo Y, Wen J, et al. Advanced Functional Materials, 2018, 28(35),1802757. 32 Song J, Zheng E, Wang X F, et al. Solar Energy Materials and Solar Cells, 2016, 144, 623. 33 Xiong L, Qin M, Chen C, et al. Advanced Functional Materials, 2018, 28(10),1706276. 34 Dong Q, Shi Y, Zhang C, et al. Nano Energy, 2017, 40, 336. 35 Murugadoss G, Kanda H, Tanaka S, et al. Journal of Power Sources, 2016, 307, 891. 36 Zhu Z, Bai Y, Liu X, et al. Advanced Materials, 2016, 28(30), 6478. 37 Kavan L, Steier L, Grätzel M. The Journal of Physical Chemistry C, 2017, 121(1), 342. 38 Hoffmann L, Brinkmann K O, Malerczyk J, et al. ACS Applied Materials & Interfaces, 2018, 10(6), 6006. 39 Correa B J P, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928. 40 Wang C, Zhao D, Grice C R, et al. Journal of Materials Chemistry A, 2016, 4(31), 12080. 41 Anaraki E H, Kermanpur A, Steier L, et al. Energy & Environmental Science, 2016, 9(10), 3128. 42 Barbe J, Tietze M L, Neophytou M, et al. ACS Applied Materials & Interfaces, 2017, 9(13), 11828. 43 Habisreutinger S N, Wenger B, Snaith H J, et al. ACS Energy Letters, 2017, 2(3), 622. 44 Ma J, Zheng X, Lei H, et al. Solar RRL, 2017, 1(10), 1700118. 45 Song Z, Bi W, Zhuang X, et al. Solar RRL, 2020, 4(2), 1900266. 46 Liu C, Zhang L, Zhou X, et al. Advanced Functional Materials, 2019, 29(47), 1807604. 47 Liu Q, Qin M C, Ke W J, et al. Advanced Functional Materials, 2016, 26(33), 6069. 48 Liu C, Huang K, Hu B, et al. Advanced Functional Materials, 2023, 33(22), 2212698. 49 Xiong Z, Lan L, Wang Y, et al. ACS Energy Letters, 2021, 6(11), 3824. 50 Park M, Kim J Y, Son H J, et al. Nano Energy, 2016, 26, 208. 51 Ren X, Yang D, Yang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2421. 52 Pang S, Zhang C, Zhang H, et al. Applied Surface Science, 2020, 507, 145099. 53 Bai Y, Fang Y, Deng Y, et al. ChemSusChem, 2016, 9(18), 2686. 54 Gao B, Cao Q, Pu X, et al. Applied Surface Science, 2021, 546, 148711. 55 Hoang V Q, Lee S K, Bark C W. Solar Energy, 2021, 230, 747. 56 Wang H, Yuan J, Xi J, et al. The Journal of Physical Chemistry Letters, 2021, 12(37), 9142. 57 Meng X, Deng J, Sun Q, et al. Journal of Colloid and Interface Science, 2022, 609, 547. 23040102-1058 Lv Z, He L, Jiang H, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16326. 59 Roose B, Johansen C M, Dupraz K, et al. Journal of Materials Chemistry A, 2018, 6(4), 1850. 60 Xiong L, Qin M, Yang G, et al. Journal of Materials Chemistry A, 2016, 4(21), 8374. 61 Zhu P, Gu S, Luo X, et al. Advanced Energy Materials, 2020, 10(3), 1903083. 62 Xie J, Huang K, Yu X, et al. ACS Nano, 2017, 11(9), 9176. 63 Chen J, Dong H, Zhang L, et al. Journal of Materials Chemistry A, 2020, 8(5), 2644. 64 Liu Z, Deng K, Hu J, et al. Angewandte Chemie International Edition, 2019, 58(33), 11497. 65 Ma H, Wang M, Wang Y, et al. Chemical Engineering Journal, 2022, 442, 136291. 66 Du J, Feng L, Guo X, et al. Journal of Power Sources, 2020, 455, 227974. 67 Xu P, He H, Ding J, et al. ACS Applied Energy Materials, 2021, 4(10), 10921. 68 Hu R, Hou W, Han G, et al. Materials Research Bulletin, 2022, 149, 111698. 69 Zuo X, Kim B, Liu B, et al. Chemical Engineering Journal, 2022, 431, 133209. 70 Zhang J, Fu J, Chen Q, et al. Chemical Engineering Journal, 2022, 433, 133744. 71 Bi H, Guo Y, Guo M, et al. Chemical Engineering Journal, 2022, 439, 135671. 72 Panigrahi S, Sk M, Jana S, et al. ACS Applied Energy Materials, 2022, 5(5), 5680. 73 Zhang H, Xu S, Guo T, et al. ACS Applied Materials & Interfaces, 2022, 14(25), 28826. 74 Xiong Z, Chen X, Zhang B, et al. Advanced Materials, 2022, 34(8), 2106118. 75 Zhang B, Oh J, Sun Z, et al. ACS Energy Letters, 2023, 8(4), 1848. 76 Wang Z, Wu T, Xiao L, et al. Journal of Power Sources, 2021, 488, 229451. 77 Zhang Y, Kong T, Xie H, et al. ACS Energy Letters, 2022, 7(3), 929. 78 Li S, Xia J, Liang C, et al. Chemical Engineering Journal, 2022, 442, 135895. 79 Hu B, Zhang J, Guo Z, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15840. 80 Bu T, Li J, Zheng F, et al. Nature Communications, 2018, 9(1), 4609. 81 Lin L, Jones T W, Wang J T, et al. Small, 2019, 16(12), 1901466. 82 Ma J, Yang G, Qin M, et al. Advanced Science (Weinh), 2017, 4(9), 1700031. 83 Wang P, Li R, Chen B, et al. Advanced Materials, 2020, 32(6), 1905766. 84 He Q, Zhang H, Han S, et al. ACS Applied Energy Materials, 2021, 4(10), 10958. 85 Gong X, Wang T, Yin G, et al. Journal of Materials Chemistry A, 2021, 9(45), 25567. 86 Zhang S, Gu H, Chen S C, et al. Journal of Materials Chemistry C, 2021, 9(12), 4240. 87 Guo R, Zhao Y, Zhang Y, et al. Energy & Environmental Materials, 2021, 4(4), 671. 88 Xie G, Lu X, Duan J, et al. Journal of Materials Chemistry A, 2021, 9(26), 15003. 89 Yao X, He B, Zhu J, et al. Nano Energy, 2022, 96, 107138. 90 Xing Y, Zhang H, Yan Z, et al. Energy & Fuels, 2022, 36(21), 13179. 91 Yan L, Xue Q, Liu M, et al. Advanced Materials, 2018, 30, 1802509. 92 He J, Su J, Ning Z, et al. ACS Applied Energy Materials, 2020, 3(6), 5173. 93 Deng F, Li X, Lv X, et al. ACS Applied Energy Materials, 2020, 3(1), 401. 94 Qi X, Wang J, Tan F, et al. ACS Applied Materials & Interfaces, 2021, 13(46), 55349. 95 Zhong H, Li W, Huang Y, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5183. 96 Li W, Cao D, Zhu X, et al. ACS Applied Energy Materials, 2023, 6(1), 191. 97 Zhao Y, Zhu J, He B, et al. ACS Applied Materials & Interfaces, 2021, 13(9), 11058. 98 Xu W, Gao Y, Kang F, et al. In: Conference Record of the 2021 IEEE 48th Photovoltaic Specialists Conference. Fort Lauderdale, 2021, pp. 1893. 99 Wang J, Wu X, Liu Y, et al. Energy Technology, 2021, 9(11), 2100562. 100 Guo Z, Teo S, Xu Z, et al. Journal of Materials Chemistry A, 2019, 7(3), 1227. 101 Zhou Q, Duan J, Wang Y, et al. Journal of Energy Chemistry, 2020, 50, 1.