Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070108-9    https://doi.org/10.11896/cldb.22070108
  无机非金属及其复合材料 |
基于缺陷工程改性富锂层状材料的研究现状
陈艳丽1,2, 解自奇1, 王梦真1, 马子晗1, 李姗姗1, 颜文超1,*, 李法强1
1 临沂大学材料科学与工程学院,山东 临沂 276000
2 菲律宾克里斯汀大学国际学院,菲律宾 马尼拉 1004
Research Status of Li-rich Layered Materials Based on Defect Engineering
CHEN Yanli1,2, XIE Ziqi1, WANG Mengzhen1, MA Zihan1, LI Shanshan1, YAN Wenchao1,*, LI Faqiang1
1 School of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China
2 Philippine Christian University Center for International Education, Manila 1004, Philippine
下载:  全 文 ( PDF ) ( 25801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着长续航纯电动汽车的快速发展,开发高能量密度和低成本的动力电池成为影响其发展的重要因素。富锂层状材料具有高的能量密度和低的成本,有望成为下一代商业化正极材料,但循环过程中层状结构向尖晶石结构转变导致电压和容量快速衰减,限制了其商业化的应用。针对上述问题,本文介绍了富锂层状材料的晶体结构、充放电机制、电压和容量衰减产生机理,基于缺陷工程角度综述了改性方法,最后对富锂层状材料的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈艳丽
解自奇
王梦真
马子晗
李姗姗
颜文超
李法强
关键词:  富锂层状材料  晶体结构  充放电机制  空位缺陷  离子掺杂    
Abstract: With the rapid development of long-range electric vehicles, the development of high-energy-density and low-cost power batteries has become an important factor. Li-rich layered materials, with high energy density and low cost, are expected to be the next-generation commercial cathode materials. Nevertheless, the rapid voltage and capacity attenuation, caused by the transformation from the layered structure to the spinel structure during charge/discharge processes, limited their commercial applications. In regard to these challenges the crystal structure, charge-discharge mechanism, fading mechanism of voltage and capacity of Li-rich layered materials are summarized, and the modification me-thods from the perspective of defect engineering are discussed as well in this paper. Finally, the outlook for future development of Li-rich layered materials is given.
Key words:  Li-rich layered material    crystal structure    charge-discharge mechanism    vacancy defect    ions doping
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(21905124)
通讯作者:  *颜文超,临沂大学材料科学与工程学院副教授、硕士研究生导师。2016年12月毕业于中国科学院青岛生物能源与过程研究所化学工程专业,博士毕业后在该所进行博士后研究。2018年10月进入临沂大学工作至今。目前主要从事高性能锂离子电池正极材料包括富锂层状材料、镍锰酸锂和高镍三元材料设计及改性研究。目前主持国家级和省部级项目2项,发表论文20余篇,包括Journal of Power Sources、ACS Sustainable Chemistry & Engineering、Journal of Alloys and Compounds、Electrochimica Acta、Ceramics International等。yanwenchao@lyu.edu.cn   
作者简介:  陈艳丽,2013年7月于西南大学获得理学硕士学位。现为临沂大学-菲律宾克里斯汀大学国际学院联合培养博士研究生,在李法强教授的指导下进行研究。目前主要研究领域为高性能锂离子电池正极材料的制备及改性。
引用本文:    
陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
CHEN Yanli, XIE Ziqi, WANG Mengzhen, MA Zihan, LI Shanshan, YAN Wenchao, LI Faqiang. Research Status of Li-rich Layered Materials Based on Defect Engineering. Materials Reports, 2024, 38(4): 22070108-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070108  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22070108
1 Wang N, Chen Y L, Yin J, et al. Journal of Alloys and Compounds, 2022, 900, 163549.
2 Potr S, uek L, Martin M, et al. Renewable and Sustainable Energy Reviews, 2021, 146, 111186.
3 Zhang H, Zhang J. eTransportation, 2021, 7, 100105.
4 Chen J, Huang Z, Zeng W, et al. ChemElectroChem, 2021, 8, 608.
5 Yin S, Deng W, Chen X, et al. Nano Energy, 2021, 83, 105854.
6 Mauler L, Duffner F, Zeier W G, et al. Energy & Environmental Science, 2021, 14, 4712.
7 Yan W C, Xie Y, Jiang J C, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 4625.
8 Liu J, Wang J, Ni Y, et al. Materials Today, 2021, 43, 132.
9 Cui S L, Gao M Y, Li G R, et al. Advanced Energy Materials, 2021, 12, 2003885.
10 Hu S, Pillai A S, Liang G, et al. Electrochemical Energy Reviews, 2019, 2, 277.
11 Kang R T, Xiao J, Sun Y N, et al. Journal of Liaocheng University (Nat. Sci), 2021, 34(19), 49(in Chinese).
康若彤, 肖晶, 孙一诺, 等. 聊城大学学报(自然科学版), 2021, 34(19), 49.
12 Liu S, Wang B, Zhang S, et al. Matter, 2021, 4, 1511.
13 Zhang K, Li B, Zuo Y, et al. Electrochemical Energy Reviews, 2019, 2, 606.
14 Zhao S Q, Yan K, Zhang J Q, et al. Angewandte Chemie-International Edition, 2021, 60, 2208.
15 Chang W, Kim S J, Park B W, et al. Journal of Alloys and Compounds, 2013, 563, 249.
16 Koyama Y, Tanaka I, Adachi H, et al. Journal of Power Sources, 2003, 119, 644.
17 Ceder G, Mishra S K. Electrochemical and Solid-State Letters, 1999, 2, 550.
18 Boulineau A, Croguennec L, Delmas C, et al. Chemistry of Materials, 2009, 21, 4216.
19 Thackeray M M, Kang S H, Johnson C S, et al. Electrochemistry Communications, 2006, 8, 1531.
20 Kim J S, Johnson C S, Vaughey J T, et al. Chemistry of Materials, 2004, 16, 1996.
21 Thackeray M M, Kang S H, Johnson C S, et al. Journal of Materials Chemistry, 2007, 17, 3112.
22 Armstrong A R, Holzapfel M, Novák P, et al. Journal of the American Chemical Society, 2006, 128, 8694.
23 Xu B, Fell C R, Chi M, et al. Energy & Environmental Science, 2011, 4, 2223.
24 Gu M, Belharouak I, Zheng J, et al. ACS Nano, 2013, 7, 760.
25 Sathiya M, Abakumov A M, Foix D, et al. Nature Materials, 2015, 14, 230.
26 Hu E, Yu X, Lin X, et al. Nature Energy, 2018, 3, 690.
27 Li G, Blake G R, Palstra T T M. Chemical Society Reviews, 2017, 46, 1693.
28 Jiao S, Fu X, Zhang L, et al. Nano Today, 2020, 31, 100833.
29 Zhang Y, Xu J, Long Y, et al. ChemNanoMat, 2020, 6, 1589.
30 Seo D H, Lee J, Urban A, et al. Nature Chemistry, 2016, 8, 692.
31 Li S, Zhang H, Li H, et al. ACS Applied Materials & Interfaces, 2021, 13, 39480.
32 Liu P, Zhang H, He W, et al. Journal of the American Chemical Society, 2019, 141, 10876.
33 Nakamura T, Ohta K, Kimura Y, et al. ACS Applied Energy Materials, 2020, 3, 9703.
34 Tang Z K, Xue Y F, Teobaldi G, et al. Nanoscale Horizons, 2020, 5, 1453.
35 Qiu B, Zhang M, Wu L, et al. Nature Communications, 2016, 7, 12108.
36 Wang Z, Lin X, Zhang J, et al. Journal of Power Sources, 2020, 462, 228171.
37 Bao L, Wei L, Fu N, et al. Journal of Energy Chemistry, 2022, 66, 123.
38 Qian D, Xu B, Chi M, et al. Physical Chemistry Chemical Physics, 2014, 16, 14665.
39 He W, Yuan D, Qian J, et al. Journal of Materials Chemistry A, 2013, 1, 11397.
40 Li Q, Li G, Fu C, et al. ACS Applied Materials & Interfaces, 2014, 6, 10330.
41 Yu H, Zhou H. The Journal of Physical Chemistry Letters, 2013, 4, 1268.
42 Zhao S, Guo Z P, Yan K, et al. Energy Storage Materials, 2021, 34, 716.
43 Xu Y, Cui Q. International Journal of Electrochemical Science, 2020, 15, 803.
44 Dong S, Zhou Y, Hai C, et al. Journal of Power Sources, 2020, 462, 228185.
45 Boulineau A, Simonin L, Colin J F, et al. Nano Letters, 2013, 13, 3857.
46 Shi J L, Zhang J N, He M, et al. ACS Applied Materials & Interfaces, 2016, 8, 20138
47 Shi J L, Xiao D D, Ge M, et al. Advanced Materials, 2018, 30, 1705575.
48 Hy S, Cheng J H, Liu J Y, et al. Chemistry of Materials, 2014, 26, 6919.
49 Abdellahi A, Urban A, Dacek S, et al. Chemistry of Materials, 2016, 28, 3659.
50 Li Q, Li G, Fu C, et al. ACS Applied Materials & Interfaces, 2014, 6, 10330.
51 Yu R, Wang X, Fu Y, et al. Journal of Materials Chemistry A, 2016, 4, 4941.
52 Feng X, Gao Y, Ben L, et al. Journal of Power Sources, 2016, 317, 74.
53 Zhang X, Xiong Y, Dong M, et al. Journal of the Electrochemical Society, 2019, 166, A2960.
54 Li N, An R, Su Y, et al. Journal of Materials Chemistry A, 2013, 1, 9760.
55 Yu R, Wang G, Liu M, et al. Journal of Power Sources, 2016, 335, 65.
56 Wu F, Kim G T, Kuenzel M, et al. Advanced Energy Materials, 2019, 9, 1902445.
57 Wang M, Han Y, Chu M, et al. Journal of Alloys and Compounds, 2021, 861, 158000.
58 Shang H, Ning F, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 10, 21349.
59 He Z, Wang Z, Chen H, et al. Journal of Power Sources, 2015, 299, 334.
60 Zhao Y, Xia M, Hu X, et al. Electrochimica Acta, 2015, 174, 1167.
61 Zhang N, Sun Y, Zhao L, et al. Ionics, 2019, 25, 5239.
62 Yu Z, Ning F, Li B. et al. The Journal of Physical Chemistry C, 2019, 123, 18870.
63 Meng S, Xie Y, Yan W C, et al. Journal of Alloys and Compounds, 2020, 838, 155517.
64 Li L, Song B H, Chang Y L, et al. Journal of Power Sources, 2015, 283, 162.
65 Sun Z, Xu L, Dong C, et al. Nano Energy, 2019, 63, 103887.
66 Li B, Yan H, Ma J, et al. Advanced Functional Materials, 2014, 24, 5112.
67 Zhao Y, Liu J, Wang S, et al. Advanced Functional Materials, 2016, 26, 4760.
68 Wang E, Xiao D, Wu T, et al. Advanced Functional Materials, DOI:10. 1002/adfm. 202201744.
69 Liang Y, Li S, Xie J, et al. New Journal of Chemistry, 2019, 43, 12004.
70 Yang J, Chen Y, Li Y, et al. ACS Applied Materials & Interfaces, 2021, 13, 25981.
71 Hu Y Y, Qin Z Z, Cong B W, et al. Chemelectrochem, 2021, 8, 2315.
72 Zheng H, Zhang C, Zhang Y, et al. Advanced Functional Materials, 2021, 31, 2100783.
73 Zhang P P, Zhai X H, Huang H, et al. Ceramics International, 2020, 46, 24723.
74 Liu D, Fan X, Li Z, et al. Nano Energy, 2019, 58, 786.
75 Chen G, An J, Meng Y, et al. Nano Energy, 2019, 57, 157.
76 Zhang Z H, Xie X Y, Xie H X, et al. Chinese Journal of Structural Chemistry, 2022, 41, 2204061.
77 Jiang W J, Zhang C X, Feng Y Z, et al. Energy Storage Materials, 2020, 32, 37.
78 Tang W, Duan J, Xie J, et al. ACS Applied Materials & Interfaces, 2021, 13, 16407.
79 Liu H, He B, Xiang W, et al. Nanotechnology, 2020, 31, 455704.
80 Saroha R, Cho J S, Ahn J H, et al. Electrochimica Acta, 2021, 366, 137471.
[1] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[2] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[3] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[4] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[5] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[6] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[7] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[8] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[9] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[10] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[11] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[12] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[13] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[14] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[15] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed