Abstract: In this work, borophosphate Na3B6PO13 was used as substrate to synthesize Sm3+ activated orange-red phosphor by high temperature solid phase method. The crystal structure, microscopic morphology and luminescence properties of phosphors were studied by X-ray diffraction, scanning electron microscopy, and luminescence measurements. Na3B6PO13:9%Sm3+ has the strongest spectral intensity and the best doping concentration, the peak value of excitation spectrum is 402 nm, corresponding to the 6H5/2→4F7/2 transition. The emissions at 599 nm and 646 nm correspond to the 4G5/2→4H7/2 and 6H9/2 transitions, separately. The concentration quenching occurs with the increase of doping concentration, which is caused by the electric dipole-quadrupole interaction. The color coordinates of Na3B6PO13:9%Sm3+ are (0.559 1, 0.431 7), corresponding to orange-red color. The temperature-dependent luminescence shows that the sample at 150℃ maintains 90% of the luminescence intensity at room temperature. The above results indicate that Na3B6PO13: Sm3+ phosphor is a promising orange-red phosphor material.
1 Cao Y, Ding J, Ding X, et al. Journal of Materials Chemistry C, 2017, 5(5), 1184. 2 Yan B, Wang G, Liu L, et al. New Journal of Chemistry, 2018, 42(18), 15207. 3 Du P, Huang X Y, Yu J S. Chemical Engineering Journal, 2018, 337, 91 4 Li K, Lian H Z. Journal of Luminescence, 2018, 198, 155. 5 Jia Y M, Shi Z X, Wang J, et al. Materials Reports, 2024(3), 1 (in Chinese). 贾宇盟, 史忠祥, 王晶, 等.材料导报, 2024(3), 1. 6 van Klooster H S. Zeitschrift Für Anorganische Chemie, 1911, 69(1), 122. 7 Wang Q L, Dilare H, Shen Y L, et al. Spectroscopy and Spectral Analysis, 2019, 39(4), 1013 (in Chinese). 王庆玲, 迪拉热·哈力木拉提, 沈玉玲,等. 光谱学与光谱分析, 2019, 39(4), 1013. 8 Chen C H, Wang X J, Meng L L, et al. Chinese Journal of Luminescence, 2018, 39(7), 923 (in Chinese). 陈彩花, 王小军, 蒙丽丽,等. 发光学报, 2018, 39(7), 923. 9 Zhai Y Q, Zhao X, Zhao S, et al. Chinese Journal of Luminescence, 2017, 38(8), 987 (in Chinese). 翟永清, 赵鑫, 杨帅,等. 发光学报, 2017, 38(8), 987. 10 Li N, Duan P P, Sun X W, et al. Chinese Journal of Luminescence, 2015, 36(11), 1278 (in Chinese). 李宁, 段萍萍, 孙旭炜,等. 发光学报, 2015, 36(11), 1278. 11 Wu J X, Li M, Jia H L. Journal of Alloys and Compounds, 2020, 821, 153535. 12 Wang S, Xu Y, Chen T, et al. Chemical Engineering Journal, 2021, 404, 125912. 13 Jin X, Xie Y, Tang R, et al. Journal of Alloys and Compounds, 2022, 899, 162739. 14 Hu X, Zhang A, Tang R, et al. Journal of Alloys and Compounds, 2023, 938, 168540. 15 Pradhan M K, Dash S. Journal of Rare Earths, 2022, 40(12), 1837. 16 Zhang Z, Mei L, Liu N, et al. Journal of Luminescence, 2021, 240, 118414. 17 Jin X, Xie Y, Tang R, et al. Journal of Alloys and Compounds, 2022, 899, 162739. 18 Qin Z, Dong L, Zhang G, et al. Optical Materials, 2022, 131, 112640. 19 Revathy J S, Priya N S C, Sandhya K, et al. Bulletin of Materials Science, 2021, 44, 1. 20 Xiong D B, Chen H H, Yang X X, et al. Journal of Solid State Chemistry, 2007, 180(1), 233. 21 Yang F, He H, Liu Z, et al. Physica B: Condensed Matter, 2022, 642, 414137. 22 Fan Z, Bi S, Seo H. Journal of Alloys and Compounds, 2022, 916, 165347. 23 Limbu S, Singh L, Okram G. Materials Chemistry and Physics, 2022, 290, 126619. 24 Zhang X, Li Y, Hu R, et al. Journal of Rare Earths, 2018, 36(3), 231. 25 Singh V, Lakshminnarayaha G, Singh N. Optik, 2020, 211, 164272. 26 Ji C, Huang Z, Tian X, et al. Journal of Luminescence, 2021, 232, 117775. 27 Blasse G.Physics Letters A, 1968, 28(6), 444. 28 Khajuria P, Manhas M, Bedyal A, et al. Displays, 2022, 75, 102302. 29 Ma Y, Tang S, Ji C, Wu D, et al. Journal of Luminescence, 2022, 242, 118530. 30 Gupta I, Kumar P, Singh S, et al. Journal of Molecular Structure, 2022, 1267, 133567. 31 Hua Y, Yu J. Journal of Materials Science & Technology, 2021, 91, 148.