Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22060081-11    https://doi.org/10.11896/cldb.22060081
  无机非金属及其复合材料 |
用于热障涂层的高熵陶瓷材料研究进展
刘嘉航1, 吕哲1,*, 周艳文1, 解志文2, 陈浩1, 程蕾1
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 辽宁科技大学机械工程与自动化学院,辽宁 鞍山 114051
Research Progress of High-entropy Ceramics Materials for Thermal Barrier Coatings
LIU Jiahang1, LYU Zhe1,*, ZHOU Yanwen1, XIE Zhiwen2, CHEN Hao1, CHENG Lei1
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
下载:  全 文 ( PDF ) ( 28780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层是一种应用于涡轮发动机热端部件,具有隔热作用的陶瓷涂层。随着航空航天技术的不断发展,涡轮发动机推重比逐渐增加,不断提高的涡轮前进口温度以及更加恶劣的使用环境对热障涂层陶瓷材料提出了更高要求。近年来已有多种陶瓷被认为具有应用于热障涂层的潜力,其中高熵陶瓷因其优异的热力学性能、杰出的隔热能力而受到研究人员的关注。在此基础上,本文综述了高熵陶瓷成分设计的三种判据,包括原子尺寸判据、晶格参数判据以及熵判据,并总结了不同判据在实际陶瓷成分设计上的局限性;总结了高熵陶瓷合成方式并重点介绍了固相反应法、溶胶-凝胶法、共沉淀法与溶液燃烧法,对比了不同制备方式合成陶瓷粉末的优缺点;归纳了热障涂层用高熵陶瓷的三种结构,包括烧绿石/萤石结构、独居石结构以及钙钛矿结构;重点综述了高熵陶瓷的性能特点,包括隔热性能、热力学性能、抗腐蚀性能以及化学相容性,并分析了多组元掺杂优化陶瓷性能的机理;最后展望了高熵陶瓷在热障涂层应用中的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘嘉航
吕哲
周艳文
解志文
陈浩
程蕾
关键词:  热障涂层  高熵陶瓷  成分设计  合成方式  晶体结构  使用性能    
Abstract: The thermal barrier coating is a surface technology applied to the hot end components of a turbine engine and has a thermal insulation effect. With the continuous development of aerospace technology, the thrust-weight ratio of turbine engines increases gradually. The increasing inlet temperature of the turbine and the worse use environment put forward higher requirements for thermal barrier coating ceramic materials. In recent years, a variety of ceramics have been considered to have potential applications in thermal barrier coatings. High entropy ceramics have attracted much attention due to their excellent thermodynamic properties and excellent thermal insulation. On this basis, three criteria for high-entropy ceramic composition design were reviewed, including atomic size criterion, lattice parameter criterion, and entropy criterion. The limitations of different criteria in actual ceramic composition design were summarized. The synthesis methods of high-entropy ceramics were summarized, and the solid-state reaction, sol-gel, co-precipitation, and solution combustion methods were definitely introduced, and the advantages and disadvantages of different preparation methods for synthesizing ceramic powders were compared. Three structures of high entropy ceramics for thermal barrier coatings were summarized, including pyrochlore/fluorite structure, monazite structure, and perovskite structure. The performance characteristics of high entropy ceramics, including thermal insulation, thermodynamic properties, corrosion resistance, and chemical compatibility were reviewed, and the mechanism of multi-component doping to optimize the performance of ceramics was analyzed. Finally, the development direction of high entropy ceramics in the application of thermal barrier coatings had prospected.
Key words:  thermal barrier coating    high-entropy ceramic    component design    synthesis method    crystal structure    functional performance
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51702145)
通讯作者:  * 吕哲,工学博士,辽宁科技大学副教授、硕士研究生导师。2010年6月于辽宁科技大学材料加工工程毕业,2015年于韩国国立昌原大学陶瓷材料专业博士毕业后到辽宁科技大学工作至今。目前主要从事热障涂层、热障涂层陶瓷材料、热喷涂技术等方面的研究工作。发表学术论文30余篇,授权发明专利2项,申请发明专利4项。lz19870522@126.com   
作者简介:  刘嘉航,2020年6月毕业于河北工业大学,获得工学学士学位。现为辽宁科技大学材料与冶金学院硕士研究生,在吕哲副教授的指导下进行研究。目前主要研究领域为热障涂层、热障涂层材料、热喷涂技术。
引用本文:    
刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
LIU Jiahang, LYU Zhe, ZHOU Yanwen, XIE Zhiwen, CHEN Hao, CHENG Lei. Research Progress of High-entropy Ceramics Materials for Thermal Barrier Coatings. Materials Reports, 2023, 37(22): 22060081-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060081  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22060081
1 Ji M M, Zhu S Z, Ma Z. Surface Technology, 2021, 50(1), 253 (in Chinese).
姬梅梅, 朱时珍, 马壮. 表面技术, 2021, 50(1), 253.
2 Long Y, Wang Y Z, Chen X H, et al. Ceramics International, 2021, 47(14), 20126.
3 Weng H T, Duan F L, Ji Z L, et al. Ceramics International, 2020, 46(3), 3600.
4 Wang H Y, An Y Q, Li C Y, et al. Materials Reports, 2011, 25(S2), 482 (in Chinese).
王会阳, 安云岐, 李承宇, 等. 材料导报, 2011, 25(S2), 482.
5 Wang Z P, Fei Y J, Liu Y K. Surface Technology, 2021, 50(7), 126 (in Chinese).
王志平, 费宇杰, 刘延宽. 表面技术, 2021, 50(7), 126.
6 Ni J, Shi K, Xue S H, et al. Materials Reports, 2021, 35(S1), 163 (in Chinese).
倪嘉, 史昆, 薛松海, 等. 材料导报, 2021, 35(S1), 163.
7 Delon E, Anasrt F, Duluard S, et al. Journal of the European Ceramic Society, 2018, 38(14), 4719.
8 Zhang X, Liu M, Mao J, et al. Surface Technology, 2020, 49(6), 236 (in Chinese).
张啸, 刘敏, 毛杰, 等. 表面技术, 2020, 49(6), 236.
9 Jin T. Study on thermophysical properties and CMAS corrosion behavior of (Gd0. 9Yb0. 1)2(Zr1-xCex)2O7 ceramic for thermal barrier coatings. Master's Thesis, Jiangsu University, China, 2020 (in Chinese).
金涛. (Gd0. 9Yb0. 1)2(Zr1-xCex)2O7热障涂层陶瓷层热物理性能及CMAS腐蚀行为研究. 硕士学位论文, 江苏大学, 2020.
10 Ji Q, Song P, Wang Y Q, et al. Journal of Functional Materials, 2016, 47(4), 4074 (in Chinese).
季强, 宋鹏, 王逸群, 等. 功能材料, 2016, 47(4), 4074.
11 Ouyang T Y, Suo J P. Surface and Coatings Technology, 2021, 412, 127065.
12 Cheng B, Yang G J, Zhang Q, et al. Journal of the European Ceramic Society, 2018, 38(14), 1888.
13 Jung S H, Jung Y G, Song D, et al. Surface and Coatings Technology, 2017, 323, 39.
14 Shen Z Y, Liu Z, Liu G X, et al. Surface and Interfaces, 2021, 24, 101123.
15 Cao X Q, Vassen R, Stoever D. Journal of the European Ceramic Society, 2004, 24(1), 1.
16 Jin G, Fang Y C, Cui X F, et al. Surface and Coatings Technology, 2020, 397, 125986.
17 Zhao H X, Deng C M, Fu L, et al. Surface Technology, 2022, 52(2), 116 (in Chinese).
赵泓旭, 邓春明, 付朗, 等. 表面技术, 2022, 52(2), 116.
18 Zhang H M, Li Z J, Sang W W, et al. Surface Technology, 2017, 46(9), 1 (in Chinese).
张昊明, 李振军, 桑玮玮, 等. 表面技术, 2017, 46(9), 1.
19 Jana P, Jayan P S, Mandal S, et al. Surface and Coatings Technology, 2017, 322, 108.
20 Kumar R, Jordan E, Gell M, et al. Surface and Coatings Technology, 2017, 327, 126.
21 Cao X Q. Journal of the Chinese Ceramic Society, 2020, 48(10), 1622 (in Chinese).
曹学强. 硅酸盐学报, 2020, 48(10), 1622.
22 Wu S, Zhao Y T, Li W G, et al. Surface Technology, 2020, 49(9), 101 (in Chinese).
吴硕, 赵远涛, 李文戈, 等. 表面技术, 2020, 49(9), 101.
23 Yeh J W, Chen S W, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
24 Rost C M, Sachete E, Borman T, et al. Nature Communications, 2015, 6(1), 1.
25 Luo X W, Xu C H, Duan S S, et al. Aeronautical Manufacturing Technology, 2022, 65(3), 82 (in Chinese).
罗学维, 徐春辉, 段帅帅, 等. 航空制造技术, 2022, 65(3), 82.
26 Xia M, Lu N, Chen Y X, et al. Rare Metal Materials and Engineering, 2022, 51(1), 349 (in Chinese).
夏铭, 鲁楠, 陈永雄, 等. 稀有金属材料与工程, 2022, 51(1), 349.
27 Nisar A, Zhang C, Boesl B, et al. Ceramics International, 2020, 46(16A), 25845.
28 Wen T Q, Ning S S, Liu D, et al. Journal of the American Ceramic Society, 2019, 102(8), 4956.
29 Jiang S C, Hu T, Gild J, et al. Scripta Materialia, 2018, 142, 116.
30 Gild J, Zhang Y Y, Harrington T, et al. Scientific Reports, 2016, 6, 37946.
31 Chen H, Zhao Z F, Xiang H M, et al. Journal of Materials Science & Technology, 2020, 48, 57.
32 Sarker P, Harrington T, Toher C, et al. Nature Communications, 2018, 9(1), 4980.
33 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2019, 166, 271.
34 Liu T T. Fabrication of YAG transparent ceramic by solid-state reaction method and centrifugal casting of Nd: YAG. Master's Thesis, Northeastern University, China, 2009 (in Chinese).
刘婷婷. 固相反应法制备YAG透明陶瓷及Nd: YAG离心成型研究. 硕士学位论文, 东北大学, 2009.
35 Zhang Z, Zheng Y, Tong Y Q, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2104 (in Chinese).
张哲, 郑彧, 童亚琦, 等. 硅酸盐通报, 2019, 38(7), 2104.
36 Guo M Y, Wang Y M, Pan Z D, et al. Journal of the Chinese Ceramic Society, 2015, 43(4), 411 (in Chinese).
郭名勇, 王燕民, 潘志东, 等. 硅酸盐学报, 2015, 43(4), 411.
37 Cao X Q. New materials and new structures for thermal barrier coatings, Science Press, China, 2016, pp. 95 (in Chinese).
曹学强. 热障涂层新材料和新结构, 科学出版社, 2016, pp. 95.
38 Huang Q Y, Liang Y L, Wang J R, et al. Nonferrous Metals Science and Engineering, 2020, 11(6), 64 (in Chinese).
黄庆研, 梁雅莉, 王俊荣, 等. 有色金属科学与工程, 2020, 11(6), 64.
39 Zhang H S, Zhao L M, Sang W W, et al. Ceramics International, 2020, 46(16A), 25845.
40 Zhao Z F, Chen H, Xiang H M, et al. Journal of Materials Science & Technology, 2019, 35(12), 2892.
41 Zhang K B, Li W W, Zeng J J, et al. Journal of Alloys and Compounds, 2020, 817, 153328.
42 Li F, Zhou L, Liu J X, et al. Journal of Advanced Ceramics, 2019, 8, 576.
43 Qin Y, Liu J X, Li F, et al. Journal of Advanced Ceramics, 2019, 8(1), 178.
44 Li Y. Investigation of spark plasma sintering and mechanical properties of Al2O3/YSZ and Si3N4 ceramics. Master's Thesis, Shenzhen University, China, 2019 (in Chinese).
李阳. Al2O3/YSZ及Si3N4陶瓷的放电等离子烧结及力学性能的研究. 硕士学位论文, 深圳大学, 2019.
45 Shen X Q, Preparation and mechanical properties of high-entropy diboride ceramics. Master's Thesis, Donghua University, China, 2021 (in Chinese).
沈晓琴. 高熵硼化物陶瓷的制备及力学性能研究. 硕士学位论文, 东华大学, 2021.
46 Teng Z, Tan Y Q, Zeng S F, et al. Journal of the European Ceramic Society, 2021, 41(6), 3614.
47 Xie M, Liu Y, Li R Y, et al. Aeronautical Manufacturing Technology, 2022, 65(3), 51 (in Chinese).
谢敏, 刘洋, 李瑞一, 等. 航空制造技术, 2022, 65(3), 51.
48 He J J, He G, Liu J, et al. Journal of the European Ceramic Society, 2021, 41(12), 6080.
49 Sun J B. Failure mechanism of rare earth hexaaluminate thermal barrier coatings. Ph. D. Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
孙俊彬. 稀土六铝酸盐热障涂层失效机理研究. 博士学位论文, 武汉理工大学, 2018.
50 Zhao Z F, Xiang H M, Dai F Z, et al. Journal of Materials Science & Technology, 2019, 35(10), 2227.
51 Qiu T, Miao X L, Song W J, et al. Journal of Materials Engineering, 2018, 46(3), 142 (in Chinese).
邱婷, 苗晓亮, 宋文佳, 等. 材料工程, 2018, 46(3), 142.
52 Chen L, Feng J. Advanced Ceramics, 2019, 40(6), 367 (in Chinese).
陈琳, 冯晶. 现代技术陶瓷, 2019, 40(6), 367.
53 Chen L, Li B H, Guo J, et al. Journal of Advanced Ceramics, 2022, 11(4), 556.
54 Zhao M T. Research on thermal insulation and high temperature oxidation resistance properties of rare earth doped zirconia-based thermal barrier coatings. Master's Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
赵梦甜. 稀土掺杂氧化锆基热障涂层的隔热性能和抗高温氧化性能研究. 硕士学位论文, 上海交通大学, 2019.
55 Ding K Y, Zhao J, Cheng T T, et al. Hot Working Technology, 2021, 50(24), 100 (in Chinese).
丁坤英, 赵锦, 程涛涛, 等. 热加工工艺, 2021, 50(24), 100.
56 Zhang P, Feng Y J, Li Y, et al. Scripta Materialia, 2020, 180, 51.
57 Zhu J T, Meng X Y, Zhang P, et al. Journal of the European Ceramic Society, 2021, 41(4), 2861.
58 Zhao Z F, Chen H, Xiang H M, et al. Journal of Materials Science & Technology, 2020, 39, 167.
59 Sang W W, Zhang H S, Chen H H, et al. Journal of Inorganic Mate-rials, 2021, 36(4), 405.
60 Zhang Y H, Xie M, Wang Z G, et al. Ceramics International, 2022, 48(7), 9602.
61 Chu A M, Wang Z Q, Zhang D Z, et al. Materials Reports, 2017, 31(S1), 363.
储爱民, 王志谦, 张德智, 等. 材料导报, 2017, 31(S1), 363.
62 Zeng Z Y B. Study on preparation process and strengthening-toughening mechanism of multielement synergistically toughened zirconia-based ceramics. Ph. D. Thesis, South China University of Technology, China, 2019 (in Chinese).
曾招余波. 多元协同增韧氧化锆基陶瓷的制备工艺及强韧化机理研究. 博士学位论文, 华南理工大学, 2019.
63 Zhu J T, Meng X Y, Xu J, et al. Journal of the European Ceramic Society, 2021, 41(1), 1052.
64 Zhong X H, Zhao H Y, Zhou X M, et al. Journal of Alloys and Compounds, 2014, 593, 50.
65 Li G R, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2018, 101(8), 3636.
66 Cong L K, Li W, Wang J C, et al. Journal of Materials Science & Technology, 2022, 101, 199.
67 Yin B B, Sun M, Zhu W, et al. Results in Physics, 2021, 26, 104365.
68 Guo L, Gao Y, Cheng Y X, et al. Corrosion Science, 2021, 192, 109847.
69 Tu T Z, Liu J X, Zhou L, et al. Journal of the European Ceramic Society, 2022, 42(2), 649.
70 Deng S X, He G, Yang Z C, et al. Journal of Materials Science & Technology, 2021, 107, 259.
71 Bahamirian M, Hadavis M M, Farvizi M, et al. Surface and Coatings Technology, 2019, 360, 1.
72 Guo L, Xin H. Materials Protection, 2021, 54(2), 1 (in Chinese).
郭磊, 辛会. 材料保护, 2021, 54(2), 1.
73 Yuan Y. High-entropy effect on microstructural stability and properties of nanocrystalline alloys. Ph. D. Thesis, University of Science and Technology, China, 2021 (in Chinese).
原园. 高熵效应对纳米晶合金组织稳定性和性能的影响规律. 博士学位论文, 北京科技大学. 2021.
74 Song D, Song T, Paik U, et al. Surface and Coatings Technology, 2020, 400, 126197.
75 Zhang H. The study of rare-earth oxy-apatite-a potential material of CMAS-resistance for thermal barrier coatings. Master's Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese).
张晗. 一种抗CMAS熔盐腐蚀的热障涂层新材料——稀土氧基磷灰石. 硕士学位论文, 上海交通大学, 2020.
[1] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[2] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[3] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[4] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[5] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[6] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[7] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[8] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[9] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[10] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[11] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[12] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[13] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[14] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[15] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed