1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China 2 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
Abstract: The thermal barrier coating is a surface technology applied to the hot end components of a turbine engine and has a thermal insulation effect. With the continuous development of aerospace technology, the thrust-weight ratio of turbine engines increases gradually. The increasing inlet temperature of the turbine and the worse use environment put forward higher requirements for thermal barrier coating ceramic materials. In recent years, a variety of ceramics have been considered to have potential applications in thermal barrier coatings. High entropy ceramics have attracted much attention due to their excellent thermodynamic properties and excellent thermal insulation. On this basis, three criteria for high-entropy ceramic composition design were reviewed, including atomic size criterion, lattice parameter criterion, and entropy criterion. The limitations of different criteria in actual ceramic composition design were summarized. The synthesis methods of high-entropy ceramics were summarized, and the solid-state reaction, sol-gel, co-precipitation, and solution combustion methods were definitely introduced, and the advantages and disadvantages of different preparation methods for synthesizing ceramic powders were compared. Three structures of high entropy ceramics for thermal barrier coatings were summarized, including pyrochlore/fluorite structure, monazite structure, and perovskite structure. The performance characteristics of high entropy ceramics, including thermal insulation, thermodynamic properties, corrosion resistance, and chemical compatibility were reviewed, and the mechanism of multi-component doping to optimize the performance of ceramics was analyzed. Finally, the development direction of high entropy ceramics in the application of thermal barrier coatings had prospected.
1 Ji M M, Zhu S Z, Ma Z. Surface Technology, 2021, 50(1), 253 (in Chinese). 姬梅梅, 朱时珍, 马壮. 表面技术, 2021, 50(1), 253. 2 Long Y, Wang Y Z, Chen X H, et al. Ceramics International, 2021, 47(14), 20126. 3 Weng H T, Duan F L, Ji Z L, et al. Ceramics International, 2020, 46(3), 3600. 4 Wang H Y, An Y Q, Li C Y, et al. Materials Reports, 2011, 25(S2), 482 (in Chinese). 王会阳, 安云岐, 李承宇, 等. 材料导报, 2011, 25(S2), 482. 5 Wang Z P, Fei Y J, Liu Y K. Surface Technology, 2021, 50(7), 126 (in Chinese). 王志平, 费宇杰, 刘延宽. 表面技术, 2021, 50(7), 126. 6 Ni J, Shi K, Xue S H, et al. Materials Reports, 2021, 35(S1), 163 (in Chinese). 倪嘉, 史昆, 薛松海, 等. 材料导报, 2021, 35(S1), 163. 7 Delon E, Anasrt F, Duluard S, et al. Journal of the European Ceramic Society, 2018, 38(14), 4719. 8 Zhang X, Liu M, Mao J, et al. Surface Technology, 2020, 49(6), 236 (in Chinese). 张啸, 刘敏, 毛杰, 等. 表面技术, 2020, 49(6), 236. 9 Jin T. Study on thermophysical properties and CMAS corrosion behavior of (Gd0. 9Yb0. 1)2(Zr1-xCex)2O7 ceramic for thermal barrier coatings. Master's Thesis, Jiangsu University, China, 2020 (in Chinese). 金涛. (Gd0. 9Yb0. 1)2(Zr1-xCex)2O7热障涂层陶瓷层热物理性能及CMAS腐蚀行为研究. 硕士学位论文, 江苏大学, 2020. 10 Ji Q, Song P, Wang Y Q, et al. Journal of Functional Materials, 2016, 47(4), 4074 (in Chinese). 季强, 宋鹏, 王逸群, 等. 功能材料, 2016, 47(4), 4074. 11 Ouyang T Y, Suo J P. Surface and Coatings Technology, 2021, 412, 127065. 12 Cheng B, Yang G J, Zhang Q, et al. Journal of the European Ceramic Society, 2018, 38(14), 1888. 13 Jung S H, Jung Y G, Song D, et al. Surface and Coatings Technology, 2017, 323, 39. 14 Shen Z Y, Liu Z, Liu G X, et al. Surface and Interfaces, 2021, 24, 101123. 15 Cao X Q, Vassen R, Stoever D. Journal of the European CeramicSociety, 2004, 24(1), 1. 16 Jin G, Fang Y C, Cui X F, et al. Surface and Coatings Technology, 2020, 397, 125986. 17 Zhao H X, Deng C M, Fu L, et al. Surface Technology, 2022, 52(2), 116 (in Chinese). 赵泓旭, 邓春明, 付朗, 等. 表面技术, 2022, 52(2), 116. 18 Zhang H M, Li Z J, Sang W W, et al. Surface Technology, 2017, 46(9), 1 (in Chinese). 张昊明, 李振军, 桑玮玮, 等. 表面技术, 2017, 46(9), 1. 19 Jana P, Jayan P S, Mandal S, et al. Surface and Coatings Technology, 2017, 322, 108. 20 Kumar R, Jordan E, Gell M, et al. Surface and Coatings Technology, 2017, 327, 126. 21 Cao X Q. Journal of the Chinese Ceramic Society, 2020, 48(10), 1622 (in Chinese). 曹学强. 硅酸盐学报, 2020, 48(10), 1622. 22 Wu S, Zhao Y T, Li W G, et al. Surface Technology, 2020, 49(9), 101 (in Chinese). 吴硕, 赵远涛, 李文戈, 等. 表面技术, 2020, 49(9), 101. 23 Yeh J W, Chen S W, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 24 Rost C M, Sachete E, Borman T, et al. Nature Communications, 2015, 6(1), 1. 25 Luo X W, Xu C H, Duan S S, et al. Aeronautical Manufacturing Technology, 2022, 65(3), 82 (in Chinese). 罗学维, 徐春辉, 段帅帅, 等. 航空制造技术, 2022, 65(3), 82. 26 Xia M, Lu N, Chen Y X, et al. Rare Metal Materials and Engineering, 2022, 51(1), 349 (in Chinese). 夏铭, 鲁楠, 陈永雄, 等. 稀有金属材料与工程, 2022, 51(1), 349. 27 Nisar A, Zhang C, Boesl B, et al. Ceramics International, 2020, 46(16A), 25845. 28 Wen T Q, Ning S S, Liu D, et al. Journal of the American Ceramic Society, 2019, 102(8), 4956. 29 Jiang S C, Hu T, Gild J, et al. Scripta Materialia, 2018, 142, 116. 30 Gild J, Zhang Y Y, Harrington T, et al. Scientific Reports, 2016, 6, 37946. 31 Chen H, Zhao Z F, Xiang H M, et al. Journal of Materials Science & Technology, 2020, 48, 57. 32 Sarker P, Harrington T, Toher C, et al. Nature Communications, 2018, 9(1), 4980. 33 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2019, 166, 271. 34 Liu T T. Fabrication of YAG transparent ceramic by solid-state reaction method and centrifugal casting of Nd: YAG. Master's Thesis, Northeastern University, China, 2009 (in Chinese). 刘婷婷. 固相反应法制备YAG透明陶瓷及Nd: YAG离心成型研究. 硕士学位论文, 东北大学, 2009. 35 Zhang Z, Zheng Y, Tong Y Q, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2104 (in Chinese). 张哲, 郑彧, 童亚琦, 等. 硅酸盐通报, 2019, 38(7), 2104. 36 Guo M Y, Wang Y M, Pan Z D, et al. Journal of the Chinese Ceramic Society, 2015, 43(4), 411 (in Chinese). 郭名勇, 王燕民, 潘志东, 等. 硅酸盐学报, 2015, 43(4), 411. 37 Cao X Q. New materials and new structures for thermal barrier coatings, Science Press, China, 2016, pp. 95 (in Chinese). 曹学强. 热障涂层新材料和新结构, 科学出版社, 2016, pp. 95. 38 Huang Q Y, Liang Y L, Wang J R, et al. Nonferrous Metals Science and Engineering, 2020, 11(6), 64 (in Chinese). 黄庆研, 梁雅莉, 王俊荣, 等. 有色金属科学与工程, 2020, 11(6), 64. 39 Zhang H S, Zhao L M, Sang W W, et al. Ceramics International, 2020, 46(16A), 25845. 40 Zhao Z F, Chen H, Xiang H M, et al. Journal of Materials Science & Technology, 2019, 35(12), 2892. 41 Zhang K B, Li W W, Zeng J J, et al. Journal of Alloys and Compounds, 2020, 817, 153328. 42 Li F, Zhou L, Liu J X, et al. Journal of Advanced Ceramics, 2019, 8, 576. 43 Qin Y, Liu J X, Li F, et al. Journal of Advanced Ceramics, 2019, 8(1), 178. 44 Li Y. Investigation of spark plasma sintering and mechanical properties of Al2O3/YSZ and Si3N4 ceramics. Master's Thesis, Shenzhen University, China, 2019 (in Chinese). 李阳. Al2O3/YSZ及Si3N4陶瓷的放电等离子烧结及力学性能的研究. 硕士学位论文, 深圳大学, 2019. 45 Shen X Q, Preparation and mechanical properties of high-entropy diboride ceramics. Master's Thesis, Donghua University, China, 2021 (in Chinese). 沈晓琴. 高熵硼化物陶瓷的制备及力学性能研究. 硕士学位论文, 东华大学, 2021. 46 Teng Z, Tan Y Q, Zeng S F, et al. Journal of the European Ceramic Society, 2021, 41(6), 3614. 47 Xie M, Liu Y, Li R Y, et al. Aeronautical Manufacturing Technology, 2022, 65(3), 51 (in Chinese). 谢敏, 刘洋, 李瑞一, 等. 航空制造技术, 2022, 65(3), 51. 48 He J J, He G, Liu J, et al. Journal of the European Ceramic Society, 2021, 41(12), 6080. 49 Sun J B. Failure mechanism of rare earth hexaaluminate thermal barrier coatings. Ph. D. Thesis, Wuhan University of Technology, China, 2018 (in Chinese). 孙俊彬. 稀土六铝酸盐热障涂层失效机理研究. 博士学位论文, 武汉理工大学, 2018. 50 Zhao Z F, Xiang H M, Dai F Z, et al. Journal of Materials Science & Technology, 2019, 35(10), 2227. 51 Qiu T, Miao X L, Song W J, et al. Journal of Materials Engineering, 2018, 46(3), 142 (in Chinese). 邱婷, 苗晓亮, 宋文佳, 等. 材料工程, 2018, 46(3), 142. 52 Chen L, Feng J. Advanced Ceramics, 2019, 40(6), 367 (in Chinese). 陈琳, 冯晶. 现代技术陶瓷, 2019, 40(6), 367. 53 Chen L, Li B H, Guo J, et al. Journal of Advanced Ceramics, 2022, 11(4), 556. 54 Zhao M T. Research on thermal insulation and high temperature oxidation resistance properties of rare earth doped zirconia-based thermal barrier coatings. Master's Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 赵梦甜. 稀土掺杂氧化锆基热障涂层的隔热性能和抗高温氧化性能研究. 硕士学位论文, 上海交通大学, 2019. 55 Ding K Y, Zhao J, Cheng T T, et al. Hot Working Technology, 2021, 50(24), 100 (in Chinese). 丁坤英, 赵锦, 程涛涛, 等. 热加工工艺, 2021, 50(24), 100. 56 Zhang P, Feng Y J, Li Y, et al. Scripta Materialia, 2020, 180, 51. 57 Zhu J T, Meng X Y, Zhang P, et al. Journal of the European Ceramic Society, 2021, 41(4), 2861. 58 Zhao Z F, Chen H, Xiang H M, et al. Journal of Materials Science & Technology, 2020, 39, 167. 59 Sang W W, Zhang H S, Chen H H, et al. Journal of Inorganic Mate-rials, 2021, 36(4), 405. 60 Zhang Y H, Xie M, Wang Z G, et al. Ceramics International, 2022, 48(7), 9602. 61 Chu A M, Wang Z Q, Zhang D Z, et al. Materials Reports, 2017, 31(S1), 363. 储爱民, 王志谦, 张德智, 等. 材料导报, 2017, 31(S1), 363. 62 Zeng Z Y B. Study on preparation process and strengthening-toughening mechanism of multielement synergistically toughened zirconia-based ceramics. Ph. D. Thesis, South China University of Technology, China, 2019 (in Chinese). 曾招余波. 多元协同增韧氧化锆基陶瓷的制备工艺及强韧化机理研究. 博士学位论文, 华南理工大学, 2019. 63 Zhu J T, Meng X Y, Xu J, et al. Journal of the European Ceramic Society, 2021, 41(1), 1052. 64 Zhong X H, Zhao H Y, Zhou X M, et al. Journal of Alloys and Compounds, 2014, 593, 50. 65 Li G R, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2018, 101(8), 3636. 66 Cong L K, Li W, Wang J C, et al. Journal of Materials Science & Technology, 2022, 101, 199. 67 Yin B B, Sun M, Zhu W, et al. Results in Physics, 2021, 26, 104365. 68 Guo L, Gao Y, Cheng Y X, et al. Corrosion Science, 2021, 192, 109847. 69 Tu T Z, Liu J X, Zhou L, et al. Journal of the European Ceramic Society, 2022, 42(2), 649. 70 Deng S X, He G, Yang Z C, et al. Journal of Materials Science & Technology, 2021, 107, 259. 71 Bahamirian M, Hadavis M M, Farvizi M, et al. Surface and Coatings Technology, 2019, 360, 1. 72 Guo L, Xin H. Materials Protection, 2021, 54(2), 1 (in Chinese). 郭磊, 辛会. 材料保护, 2021, 54(2), 1. 73 Yuan Y. High-entropy effect on microstructural stability and properties of nanocrystalline alloys. Ph. D. Thesis, University of Science and Technology, China, 2021 (in Chinese). 原园. 高熵效应对纳米晶合金组织稳定性和性能的影响规律. 博士学位论文, 北京科技大学. 2021. 74 Song D, Song T, Paik U, et al. Surface and Coatings Technology, 2020, 400, 126197. 75 Zhang H. The study of rare-earth oxy-apatite-a potential material of CMAS-resistance for thermal barrier coatings. Master's Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese). 张晗. 一种抗CMAS熔盐腐蚀的热障涂层新材料——稀土氧基磷灰石. 硕士学位论文, 上海交通大学, 2020.