Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20090231-12    https://doi.org/10.11896/cldb.20090231
  无机非金属及其复合材料 |
六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性
李佩悦1,2,3, 马立云1,2,3, 谢恩俊1, 任子杰3, 周新军1,2, 高惠民3, 吴建新1,2
1 中建材蚌埠玻璃工业设计研究院有限公司,安徽 蚌埠 233018
2 浮法玻璃新技术国家重点实验室,安徽 蚌埠 233018
3 武汉理工大学资源与环境工程学院,武汉 430070
Crystal Structure, Thermal Conductivity Mechanism and Surface Modification of High Thermal Conductivity Hexagonal Boron Nitride Nanomaterials
LI Peiyue1,2,3, MA Liyun1,2,3, XIE Enjun1, REN Zijie3, ZHOU Xinjun1,2 , GAO Huimin3, WU Jianxin1,2
1 Bengbu Design and Research Institute for Glass Industry, Bengbu 233018, Anhui, China
2 State Key Laboratory of Float Glass New Technology, Bengbu 233018, Anhui,China
3 School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 16106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 六方氮化硼(h-BN)纳米材料,如氮化硼纳米颗粒(BNNPs)、氮化硼纳米管(BNNTs)、氮化硼纳米纤维(BNNFs)、氮化硼纳米片(BNNSs),被认为是近年来最有前途的无机纳米材料。它们具有独特的理化性能,包括超宽带隙(5.0~6.0 eV)、高导热率(50~600 W/(m·K))、高机械强度等,在覆铜板(CCL)、电子封装(EMC)、热界面材料(TIMs)、发光二极管(LED)以及相变储能(PCMs)等领域具有广阔的应用前景。与其他功能材料一样,为改善其在聚合物复合材料中的分散性和界面亲和性,在其填充聚合物材料之前,通常要对其进行表面改性,最终达到改善聚合物复合材料的力学性能、导热性能及介电性能的目的。但由于h-BN特殊的晶体结构,使得其具有极强的化学惰性和抗氧化性,一方面,与石墨烯类似,每一个h-BN层中,B原子和N原子通过强共价键相连,但由于B和N的电负性不同,这种共价键具有类似离子键的特征,相比石墨结构中的C-C共价键,B-N键更强,更难以断裂。另一方面,不同于石墨片层间的AB型堆积,h-BN片层间为AA′型堆积,相邻层中B和N原子交替堆积产生“Lip-lip”作用,使得层间的极性相互作用强于石墨层间的范德华力。另外,h-BN在合成过程中,除了边缘上残留有痕量的-OH及-NH2基团外,几乎没有其它官能团,极大加剧了h-BN表面修饰改性的难度。常用的碳纳米材料改性方法并不能使h-BN改性达到满意的效果,因此许多新的方法和药剂被用来设计修饰h-BN纳米材料。本文根据h-BN晶体结构、制备方法和表面性质,从共价键和非共价键功能化修饰两个方面,重点总结修饰改性药剂的设计选择以及对复合材料性能影响的研究进展,最后,对未来h-BN功能化的具体措施及修饰药剂设计选择的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佩悦
马立云
谢恩俊
任子杰
周新军
高惠民
吴建新
关键词:  六方氮化硼  纳米材料  高导热  晶体结构  表面修饰改性    
Abstract: Hexagonal boron nitride (h-BN) nanomaterials, such as boron nitride nano-particles, boron nitride nanotubes, boron nitride nanofibers and boron nitride nanosheets, have been among the most promising inorganic nanomaterials in recent years. Their unique properties, including high mechanical stiffness, wide band gap, excellent thermal conductivity and thermal stability, suggest many potential applications in various material fields, such as CCL, EMC, TIMS, LED and PCMs. Like other nanomaterials, prior to their utilization in nanocomposites, surface modification of h-BNs is often necessary in order to improve their dispersion and interfacial properties in polymer nanocomposites, so as to finally improve the mechanical properties, thermal conductivity and dielectric properties of polymer composites. However, the special crystals of h-BNs make it high chemical inertness and resistance to oxidation. First of all, similar to graphene, B atom and N atom are connected by strong covalent bond in each h-BN layer. However, due to the difference in electronegativity of B and N, the covalent bonds between B and N atoms are partially ionic, in contrast to the C-C bonds in graphitic structures, which makes the B-N bonds stronger and more difficult to break. Secondly, the peculiar stacking sequence of atomic planes of h-BNs are superposed as in AA′ stacking sequence different from AB stacking sequence of graphite planes. The “Lip-lip” interactions caused by the alternating accumulation of B and N atoms in adjacent layers makes the polar interaction between layers stronger than the van der Waals force between graphite layers. In addition, h-BN has almost no functional groups except for the trace amount of hydroxyl groups and amino groups on the edge planes during the synthesis process, which greatly aggravates the difficulty of surface modification of h-BN. Therefore, many new methods and agents have been used to modify h-BN nanomaterials, because commonly used method for carbon nanomaterials to modify h-BN was not very successful. In this paper, on the basis of crystal structures, synthesis methods and surface properties of h-BN, the design and selection of modification agents and their influence on the performances of the composites are summarized with respect to covalent bond and non-covalent bond functional modification. At last, this review proposes concrete research approaches for h-BN functionali-zation and provides perspectives for the design and selection of modified agents.
Key words:  hexagonal boron nitride    nanomaterials    high thermal conductivity    crystal structure    surface modification
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TB321  
基金资助: 安徽省重点研究及开发计划项目(202004a05020032);安徽省科技重大专项项目(201903a05020002);山东省重点研发计划项目(2019JZZY010317)
通讯作者:  93700803@qq.com   
作者简介:  李佩悦,2009年毕业于武汉理工大学矿物加工工程专业,获得工学硕士学位,高级工程师。现为武汉理工大学资源与环境工程学院博士研究生,在马立云教授及高惠民教授的指导下进行研究。目前主要从事低介电高导热复合材料结构设计及性能调控的研究。
马立云,2009年毕业于武汉理工大学材料科学与工程专业,获得工学硕士学位。中建材蚌埠玻璃工业设计研究院常务副院长,浮法玻璃新技术国家重点实验室副主任,教授级高级工程师,武汉理工大学兼职博士研究生导师。先后获国家科技进步二等奖2项,主持制定国家标准5项,授权发明专利40余项,发表学术论文20余篇。目前主要研究方向为玻璃新材料及低介电高导热复合材料。
引用本文:    
李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
LI Peiyue, MA Liyun, XIE Enjun, REN Zijie, ZHOU Xinjun , GAO Huimin, WU Jianxin. Crystal Structure, Thermal Conductivity Mechanism and Surface Modification of High Thermal Conductivity Hexagonal Boron Nitride Nanomaterials. Materials Reports, 2022, 36(6): 20090231-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090231  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20090231
1 Qayyum M S, Hayat H, Matharu R K, et al. Applied Physics Reviews, 2019, 6(2),18.
2 Verma A, Parashar A, Packirisamy M. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(3),1.
3 Guerra V, Wan C Y, McNally T. Progress in Materials Science, 2019,100, 170.
4 Song H F, Liu J M, Liu B L, et al. Joule, 2018, 2(3), 442.
5 Wang M M, Zhang T, Mao D S, et al. ACS Nano, 2019, 5(7), 22.
6 Sharma V, Kagdada H L, Jha P K, et al. Renewable and Sustainable Energy Reviews, 2020, 120, 201.
7 Warzoha R J, Fleischer A S. Nano Energy,2014, 6, 137.
8 Shen W T, Wu W, Liu C, et al. Polymers for Advanced Technologies, 2020, 31(9), 1911.
9 Zhou Y, Yao Y, Chen C Y, et al. Scientific Reports, 2014, 4, 1.
10 Yin J, Liang H, Yao D, et al. Journal of Alloys and Compounds, 2020, 823, 1.
11 Xia J W, Zhang G P, Deng L B, et al. RSC Advances,2015, 5(25), 19315.
12 Esfe M H, Arani A A, Rezaie M, et al. International Communications in Heat and Mass Transfer, 2015, 66, 189.
13 Slack G A, Austerman S B. Journal of Applied Physics, 1971, 42, 4713.
14 Asafa T B, Durowoju M O, Madingwaneng K P, et al. SN Applied Sciences, 2020, 2(6),55.
15 Teng C C, Ma C C, Lu C H, et al. Carbon, 2011, 49(15), 5107.
16 Che J J, Wu K, Lin Y J, et al. Composites Part A: Applied Science and Manufacturing, 2017, 99, 32.
17 Cho H B, Konno A, Fujihara T, et al. Composites Science and Technology, 2011, 72(1), 112.
18 Wang X, Yu Z H, Jiao L, et al. Nanomaterials, 2012, 9(7), 1.
19 Zhou, Y, Wang L, Zhang H, et al. Applied Physics Letters,2012, 101(1),5.
20 Wang S L, Cheng Y, Wang R. ACS Applied Materials and Interfaces, 2014, 6(9), 6481.
21 Fang L J, Wu W, Huang X Y, et al. Composites Science and Technology, 2015, 107, 67.
22 Pakdel A, Zhi C Y, Bando Y, et al. Materials Today. 2012, 15(6), 256.
23 Sharma B B, Parashar A. Critical Reviews in Solid State and Materials Sciences, 2020, 45(2), 134.
24 Kim J H, Pham T V, Hwang J H, et al. Nano Convergence, 2018, 5(1), 5.
25 Song X F, Hu J L, Zeng H B. Journal of Materials Chemistry C, 2013,1(17), 2952.
26 Zheng Z Y, Cox M C, Li B. Journal of Materials Science, 2018, 53(1), 66.
27 Pakdel A, Bando Y, Golberg D. Chemical Society Reviews, 2014, 43, 934.
28 Glavin N R, Muratore C, Jespersen M L, et al. Advanced Functional Materials, 2016, 26, 2640.
29 Zhang D L, Zha J W, Li C Q, et al. Composites Science and Technology, 2017, 144, 36.
30 Wan Y J, Yang W H, Yu S H, et al. Composites Science and Technology, 2016, 122, 27.
31 Bhimanapati G R, Kozuch D, Robinson J A. Nanoscale, 2014, 6(20), 11671.
32 Novoselov K S, Geim A K, Morozov S V, et al. Nature, 2005, 438,197.
33 Novoselov K S, Jiang D, SCchedin F, et al. PNAS, 2005,21,10451.
34 Pacile D, Meyer J C, Girit C O, et al. Applied Physics Letters, 2008,92,13307.
35 Li L H, Chen Y, Behan G, et al. Journal of Materials Chemistry,2011,21, 11862.
36 Zhi C, Bando Y, Tang C, et al. Advanced Materials, 2009, 21, 2889.
37 Xue Y F, Liu Q, He G J, et al. Nanoscale Research Letters, 2013, 8, 49.
38 Marsh K L, Souliman M, Kaner R B. Chemical Communications, 2015,51, 187.
39 Coleman J N, Lotya M O, Neill A, et al. Science, 2011,42, 568.
40 Zhou K G, Mao N N, Wang H X, et al. Angewandte Chemie International Edition, 2011,50,10839.
41 Tian X, Yun L, Zhuo C, et al. Scientific Reports, 2017, 7, 17794.
42 Lourie O R, Jones C R, Bartlett B M, et al. Chemistry of Materials, 2000, 12,1808.
43 Haubner R, Wilhelm M, Weissenbacher R, et al. Structure and Bon-ding, 2002, 102,1.
44 Yan X T, Xu Y. Chemical vapour deposition, Springer-Verlag, London, 2010.
45 Auwarter W, Suter H U, Sachdev H, et al. Chemistry of Materials, 2003, 16, 343.
46 Muller F, Stowe K, Sachdev H. Chemistry of Materials, 2005, 17, 3464.
47 Pierson H O. Journals of Composite Materials, 1975, 9, 228.
48 Han W Q, Wu L J, Zhu Y M, et al. Applied Physics Letters, 2008,93, 223103.
49 Muller F, Stowe K, Sachdev H. Chemistry of Materials, 2005,17, 3464.
50 Grad G B,Blaha P, Schwarz K, et al. Physical Review B: Condensed Matter, 2003,68,338.
51 Preobrajenski A B, Vinogradov A S, Martensson N. Surface Science, 2005,582,21.
52 Sutter P, Lahiri J, Albrecht P, et al. ACS Nano, 2011,5,7303.
53 Orofeo C M, Suzuki S, Kageshima H, et al. Nano Research, 2013,6,335.
54 Morscher M, Corso M, Greber T, et al. Surface Science,2006, 600,3280.
55 Cavar E, Westerstrom R, Mikkelsen A, et al. Surface Science, 2008, 602,1722.
56 Laskowski R, Blaha P, Schwarz K. Physical Review B: Condensed Matter, 2008,78,1436.
57 Muntwiler M, Auwarter W, Baumerger F, et al. Surface Science, 2001, 472, 125.
58 Shelimov K B, Moskovits M. Chemistry of Materials, 2000, 12, 250.
59 Zhu Y C, Bando Y, Yin L W, et al. Chemistry A European Journal, 2004, 10, 3667.
60 Gao R, Yin L W, Wang C X, et al. The Journal of Physical Chemistry C, 2009,113, 15160.
61 Jiao L Y, Zhang L, Wang X R, et al. Nature, 2009,458, 877.
62 Mayer J C, Chuvilin A, Siller G A,et al. Nano Letters, 2009,9, 2683.
63 Arenal R, Stephan O, Cochon J L, et al. Journal of the American Chemical Society, 2007, 129,16183.
64 Golberg D, Bando Y, Eremets M, et al. Applied Physics Letters, 1996, 69, 2045.
65 Zhang C Y, Zhong X L, Wang J B, et al. Chemical Physics Letters, 2003, 370, 522.
66 Marchio D, Reboux P. Introduction aux transferts thermiques, Paris, 2008.
67 Lee J H, Lee S H, Choi C J, et al. A Review of Thermal Conductivity Data,2010, 1(4), 269.
68 Aybar H S, Sharifpur M, Azizian M R, et al. Heat Transfer Engineering, 2014,3(2),37.
69 Kotia A, Borkakoti S, Deval P, et al. Heat and Mass Transfer, 2017, 53(6), 2199.
70 Chen L, Sun Y Y, Xu H F, et al. Composites Science and Technology, 2016, 122, 42.
71 Burger N, Laachachi A, Ferriol M, et al. Progress in Polymer Science, 2016, 61, 1.
72 Mosanenzadeh S G, Naguib H E. Composites Part B, 2016, 85, 24.
73 Gharagozloo-Hubmann K, Boden A, Czempiel G K F, et al. Applied Physics Letters, 2013,102, 213103,
74 Wang T, Wang M, Fu L, et al. Scientific Reports, 2018, 8(1), 2.
75 Wang Z D, Cheng Y H, Wang, H K, et al. Journal of Materials Science, 2017, 52(8), 4329.
76 Yang N, Xu C, Hou J, et al. RSC Advances, 2016, 6(22), 18279.
77 Li T L, Hsu S L C. Journal of Physical Chemistry B, 2010, 114(20), 6825.
78 Ribeiro H, Trigueiro J P C, Owuor P S, et al. Composites Science and Technology, 2018, 159, 103.
79 Xu C Y, Miao M, Jiang X F,et al. Composites Communications, 2018, 10(6), 103.
80 Weng Q H, Wang X B, Wang X, et al. Chemical Society Reviews, 2016,1,1345.
81 Wang X B, Zhi Y C, Li L, et al. Advanced Materials, 2011, 23(35), 4072.
82 Weng Q H, Wang X B, Wang X, et al. Chemical Society Reviews,2016, 45, 3989.
83 Sainsbury T, Satti A, May P, et al. Journal of the American Chemical Society, 2012, 134(45), 18758.
84 Liu Z, Li J H, Liu X H. ACS Applied Materials and Interfaces, 2020, 12(5), 6503.
85 Lei W W, Mochalin V N, Liu D, et al. Nature Communications, 2015, 6, 1.
86 Lin Y, Williams T V, Connell J W. Journal of Physical Chemistry Letters, 2010, 1(1), 277.
87 Kim D, Nakajima S, Sawada T, et al. Chemical Communications, 2015, 51, 7104.
88 Zhi C Y, Bando Y, Tang C C, et al. Angewandte Chemie, 2005, 117, 8143.
89 Shin H, Guan J W, Zgierski M Z, et al. ACS Nano, 2015, 9(12), 12573.
90 Zhi C Y, Bando Y, Terao T, et al. Chemistry-an Asian Journal, 2009, 4(10), 1536.
91 Qiu N X, Tian Z Y, Guo Y, et al. International Journal of Hydrogen Energy, 2014, 39(17), 9307.
92 Song L, Liu Z, Reddy A L M, et al. Advanced Materials, 2012, 24(36), 4878.
93 Huang Q, Bando,Y S, Zhi C T, et al. Angewandte Chemie - International Edition, 2006, 45(13), 2044.
94 Chen M S, Brandow S L, Schull T L, et al. Advanced Functional Mate-rials, 2005, 15(8), 1364.
95 Hou J, Li G H, Yang N, et al. RSC Advances, 2014, 4(83), 44282.
96 Huang X, Wang S, Zhu M, et al. Nanotechnology, 2015, 26(1), 15705.
97 Kim K, Ju H, Kim J. Polymer, 2016, 91, 74.
98 Kim K, Kim M, Hwang Y, et al. Ceramics International, 2014, 40(1), 2047.
99 Lee D J, Lee B, Park K H, et al. Nano Letters, 2015, 15(2), 1238.
100 Zeng X L, Sun J J, Yao Y M, et al. ACS Nano, 2017, 11(5), 5167.
101 Bhimanapati G R, Kozuch D, Robinson J A. Nanoscale, 2014, 6(20), 11671.
102 Lee C H, Zhang D Y, Yap Y K. Journal of Physical Chemistry C, 2012, 116(2), 1798.
103 Weng Q H, Kvashnin D G, Wang X, et al. Advanced Materials, 2017, 29(28), 1.
104 Lin Y, Williams T V, Xu T B, et al. Journal of Physical Chemistry C, 2011, 115(6), 2679.
105 Weng Q, Lin X, Li X. ACS Nano,2014, 8, 6123.
106 Sainsbury T, Satti A, May P, et al. Chemistry-A European Journal, 2012, 18(35), 10808.
107 Pal S, Vivekchand S R C, Govindaraj A, et al. Journal of Materials Chemistry, 2007, 17(5), 450.
108 Maguer A, Leroy E, Bresson L, et al. Journal of Materials Chemistry, 2009, 19(9), 1271.
109 Georgakilas V, Otyepka M, Bourlinos A B, et al. Chemical Reviews, 2012, 112(11), 6156.
110 Gu J W, Zhang Q W, Dang J, et al. Polymers for Advanced Technologies, 2012, 23(6), 1025.
111 Yu J H, Huang X Y, Wu C, et al. Polymer, 2012, 53(2), 471.
112 Fang L J, Wu C, Qian R, et al. RSC Advances, 2014, 4(40), 21010.
113 Zhou W Y, Zuo J, Zhang X Q, et al. Journal of Composite Materials, 2014, 48(20), 2517.
114 Pan C, Kou K, Jia Q, et al. Composites Part B: Engineering, 2017, 111, 83.
115 Lim H J, Islam M A, Hossain M M, et al. Langmuir, 2020, 36(20), 5563.
116 Lee H L, Kwon O H, Ha S M, et al. Physical Chemistry Chemical Phy-sics, 2014, 16(37), 20041.
117 Shen H, Guo J, Wang H, et al. ACS Applied Materials and Interfaces, 2015, 7(10), 5701.
118 Yang J, Qi G Q, Tang L S, et al. Journal of Materials Chemistry A, 2016, 4(24), 9625.
119 Wu H C, Kessler M R. ACS Applied Materials and Interfaces, 2015, 7(10), 5915.
120 Yao T, Chen K, Shao T, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2), 528.
121 He Y M, Wang Q Q, Liu W, et al. Physica Status Solidi (A) Applications and Materials Science, 2014, 211(3), 677.
122 Terao T, Bando Y, Mitome M, et al. Journal of Physical Chemistry C, 2009, 113(31), 13605.
123 Ahn K, Kim K, Kim J. Ceramics International, 2015, 41(8), 9488.
124 Chao Y H, Pang J Y, Bai Y, et al. Food Chemistry, 2020, 320, 1.
125 Tedrzejczak-silicka M, Trukawka M, Dudziak M, et al. Nano materitals, 2018, 605,1.
126 Wang F F, Zeng X L, Yao Y M, et al. Scientific Reports, 2015, 6, 1.
127 Ide Y, Liu F, Zhang J, et al. Journal of Materials Chemistry A, 2014, 2(12), 4150.
128 Xiang C L, Chen T, Zhang H T, et al. Applied Surface Science, 2017, 424, 39.
129 Harley-Trochimczyk A, Pham T, Chang J, et al. Advanced Functional Materials, 2016, 26(3), 433.
130 Yuan C, Duan B, Li L, et al. Appl Mater Interfaces, 2015, 7(23), 13000.
131 Lin Z, Liu Y, Raghavan S, et al. ACS Applied Materials & Interfaces, 2013, 5(15),7633.
132 Fu X L, Hu Y F, Yang Y G, et al. Journal of Hazardous Materials, 2013, 244-245, 102.
133 Fu X L, Hu Y F, Zhang T, et al. Applied Surface Science, 2013, 280, 828.
134 Wan M, Li M H, Xu L Q, et al. Catalysis Science and Technology, 2011, 1(7), 1159.
135 Meng S G, Ye X G, Ning X F, et al. Applied Catalysis B: Environmental, 2016, 182, 356.
136 Li X, Wang C, Lin Y, et al. RSC Advances, 2016, 6, 99165.
137 Chen J J, Zhu J X, Da Z L, et al. Applied Surface Science, 2014, 313, 1.
138 Wu W, Lv X, Wang J, et al. Journal of Colloid and Interface Science, 2017, 496, 434.
139 Wang S, Luo H, Xu X, et al. Surfaces and Interfaces, 2016, 5, 39.
[1] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[2] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[3] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[4] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[5] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[6] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[7] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[8] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[9] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[10] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[11] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[12] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[13] 李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
[14] 彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
[15] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed