Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20020137-10    https://doi.org/10.11896/cldb.20020137
  无机非金属及其复合材料 |
二维纳米材料在柔性压阻传感器中的应用研究进展
刘璐, 王李波*, 刘大荣, 胡前库, 周爱国
河南理工大学材料科学与工程学院,河南 焦作 454000
Research Progress on the Application of Two-dimensional Nano-material in Flexible Piezoresistive Sensors
LIU Lu, WANG Libo*, LIU Darong, HU Qianku, ZHOU Aiguo
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 7820KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着柔性压力传感器在可穿戴电子设备、电子皮肤等领域的快速发展,研究制备高灵敏度、低检测限、宽感应范围的高性能柔性压阻传感器成为一种必然趋势。为了获得高性能的柔性压阻传感器,需要在导电敏感材料的选择和传感器微纳结构的设计上进行一系列的创新。二维纳米材料凭借其独特的结构和优异的性能,成为柔性压阻传感器导电敏感材料的良好选择。本文综述了几种类型的二维纳米材料压阻传感器,介绍了二维纳米材料柔性传感器的微纳米结构的创新及发展,最后针对当前研究面临的问题提出了解决方法并对其今后的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘璐
王李波
刘大荣
胡前库
周爱国
关键词:  柔性压阻传感器  二维纳米材料  微纳结构  性能    
Abstract: With the rapid development of flexible pressure sensors in wearable electronic equipment, electronic skin and other fields, the research and fabrication of high-performance flexible piezoresistive sensors with high sensitivity, low detection limit, and wide sensing range, has become an inevitable trend. In order to obtain high-performance flexible piezoresistive sensors, a series of innovations need to be made in the selection of conductive sensitive materials and the design of the micro-nano structure of sensor. Due to the unique structure and excellent perfor-mance, two-dimensional nano-materials have become a good choice for conducting sensitive materials for flexible piezoresistive sensors. In this paper, several types of two-dimensional nano-material based flexible piezoresistive sensors, the innovation and development of micro-nano structures have been introduced and summarized. Finally, the solutions to the current problems are proposed and the future development direction is prospected.
Key words:  flexible piezoresistive sensors    two-dimensional nanomaterials    micro-nano structure    performance
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TB39  
基金资助: 国家自然科学基金 (51772077);河南省自然科学基金(182300410228);河南省高校科技创新团队(19IRTSTHN027)
通讯作者:  wanglibo537@hpu.edu.cn   
作者简介:  刘璐,2018年6月毕业于河南科技学院,获得理学学士学位。现为河南理工大学材料科学与工程学院硕士研究生,在王李波老师的指导下进行研究。目前主要研究领域为二维纳米材料柔性压阻传感器。
王李波,河南理工大学材料学院副教授、硕士研究生导师。2001年本科毕业于郑州大学化学系, 2007年在中科院兰州化学物理研究所获得博士学位。主要研究方向为纳米复合材料的制备、结构调控及应用。主持完成国家自然科学基金1项,国家重点实验室开放课题1项,参与国家自然科学基金面上项目3项。近年来在在国内外知名刊物上发表学术论文30余篇,其中SCI收录20余篇。
引用本文:    
刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
LIU Lu, WANG Libo, LIU Darong, HU Qianku, ZHOU Aiguo. Research Progress on the Application of Two-dimensional Nano-material in Flexible Piezoresistive Sensors. Materials Reports, 2022, 36(4): 20020137-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020137  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20020137
1 Yu J T, Sun L, Xiao Y, et al. Electronic Components & Materials, 2019, 38(6),1(in Chinese).
于江涛, 孙雷, 肖瑶, 等. 电子元件与材料, 2019, 38(6),1.
2 Yamada T, Hayamizu Y, Yamamoto Y, et al. Nature Nanotechnology, 2011, 6(5),296.
3 Hempel M, Nezich D, Kong J, et al. Nano Letters, 2012, 12(11),5714.
4 Barlian A A, Park W T, Mallon J R, et al. Proceedings of the IEEE, 2009, 97(3),513.
5 Wang X, Zhou J, Song J, et al. Nano Letters, 2007, 6(12),2768.
6 Zhou J, Gu Y, Fei P, et al. Nano Letters, 2008, 8(9),3035.
7 Zeng T Y, Hung X. Science & Technology Review, 2017(2),21(in Chinese).
曾天禹, 黄显. 科技导报, 2017(2),21.
8 Cheng Q, Liu W, Lin L T, et al. Journal of Hebei University of Science and Technology, 2017, 38(5),474(in Chinese).
程琼, 刘玮, 林兰天, 等. 河北科技大学学报, 2017, 38(5),474.
9 Bae G Y, Pak S W, Kim D, et al. Advanced Materials,2016, 28(26),5300.
10 Wu X, Han Y, Zhang X, et al. Advanced Functional Materials, 2016, 26(34),6246.
11 Tao L Q, Zhang K N, Tian H, et al. ACS Nano, 2017, 11(9),8790.
12 Boutry C M, Nguyen A, Lawal Q O, et al. Advanced Materials, 2016, 27(43),6954.
13 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11),1678.
14 Trung T Q, Lee N E. Advanced Materials, 2016, 28(22),4338.
15 Lim S, Son D, Kim J, et al. Advanced Functional Materials, 2015, 25(3),375.
16 Mannsfeld S C B, Tee C K. Nature Materials, 2010, 9(10),859.
17 Tao L Q, Tian H, Liu Y, et al. Nature Communications, 2017, 8,14579.
18 Gong S, Schwalb W, Wang Y, et al. Nature Communications, 2014, 5,3132.
19 Zhang H, Liu N, Shi Y, et al. ACS Applied Materials & Interfaces, 2016, 8(34),22374.
20 Boland C S, Khan U, Ryan G, et al. Science, 2016, 354(6317),1257.
21 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(12),12020.
22 Lee J, Kim S, Lee J, et al. Nanoscale, 2014, 6(20),11932.
23 Zhou J, Xu X, Xin Y, et al. Advanced Functional Materials, 2018,28(16),1705591.
24 Balendhran S, Walia S, Nili H, et al. Small, 2015, 11(6),640.
25 Dral A P, Elshof J E T. Sensors and Actuators, 2018, 272,369.
26 Ma Y N.Study on MXene-based smart pressure sensor. Ph.D. Thesis, Huazhong University of Science & Technology,China,2018(in Chinese).
马亚楠. MXene智能压敏传感器的研究. 博士学位论文, 华中科技大学, 2018.
27 Zheng C, Zhu J, Yang C, et al. Science China Chemistry, 2019, 62(9),1145.
28 Zhang H. ACS Nano, 2015, 9(10),9451.
29 Butler S Z, Hollen S M, Cao L, et al. ACS Nano, 2013, 7(4),2898.
30 Novoselov K S, Jiang D, Schedin F, et al. Proceedings of the National Academy of Sciences,2005,102(30),10451.
31 Huang Y, Sutter E, Shi N N, et al. ACS Nano, 2015, 9(11),10612.
32 Zhou K, Mao N, Wang H, et al. Angewandte Chemie International Edition, 2011, 50(46),11031.
33 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37),4248.
34 Tan C, Cao X, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225.
35 Kim S W, Kwon S N, Na S I. Composites Part B: Engineering, 2019, 167,573.
36 Zhang S J, Zhang H L, Yao G, et al. Journal of Alloys and Compounds, 2015, 652,48.
37 Wang L, Ma F, Shi Q, et al. Sensors & Actuators A: Physical, 2011, 165(2),207.
38 Devaraj H, Yellapantula K, Stratta M, et al. Sensors and Actuators A: Physical, 2019, 285, 645.
39 Kim K H, Jang N S, Ha S H, et al. Small, 2018,14,1704232.
40 Oh J, Yang J, Kim J, et al. ACS Nano, 2018, 12,7546.
41 Gan X, Zhao H, Schirhagl R, et al. Microchimica Acta,2018,185,478.
42 Xie J, Zhang J, Li S, et al. Journal of the American Chemical Society, 2014,136(4),1680.
43 Lu X, Qi L, Hu H, et al. Micromachines, 2019, 10(11),730.
44 Fan Y, Zhao H, Wei F, et al. Progress in Natural Science:Materials International 2020,30,437.
45 Pang Y, Zhang K, Yang Z, et al. ACS Nano, 2018, 12,2346.
46 Tsai M Y, Tarasov A, Hesabi Z R, et al. ACS Applied Materials & Interfaces, 2015, 7(23),12850.
47 Yang T T, Xiang H Y, Qin C P, et al. Advanced Electronic Materials, 2020, 6(1),1900916.
48 Chen Z, Hu Y, Zhuo H, et al. Chemistry of Materials, 2019, 31(9),3301.
49 Yue Y, Liu N, Liu W, et al. Nano Energy, 2018, 50,79.
50 Li T, Chen L, Yang X, et al. Journal of Materials Chemistry C, 2019, 7(4),1022.
51 刘连庆, 贺凯, 赵亮, 等. 中国专利, CN107631818A, 2018.
52 Niu D, Jiang W, Ye G, et al. Materials Research Bulletin, 2018, 102,92.
53 Sengupta D, Pei Y, Kottapalli A G P. ACS Applied Materials & Interfaces, 2019, 11(38),35201.
54 Yao H B, Ge J, Wang C F, et al. Advanced Materials, 2013, 25(46),6692.
55 Zhang F, Feng Y, Qin M, et al. Advanced Functional Materials, 2019, 29(25),1901383.
56 Wang S, Chen G, Niu S, et al. ACS Applied Materials & Interfaces, 2019, 11(51),48331.
57 Wu Z, Wei J, Dong R, et al. Sensors (Basel), 2019, 19(18),3963.
58 Chen W F, Lyu G, Tao H C, et al. Materials Reports A: Review Papers, 2019 33(4),81(in Chinese).
陈卫丰, 吕果, 陶华超, 等. 材料导报:综述篇, 2019, 33(4),81.
59 Li F, Shen T, Xu L, et al. Advanced Electronic Materials, 2019, 5(12),1900803.
60 Wu W, Wang L, Li Y, et al. Nature, 2014, 514(7523),470.
61 Zhang H, Wang L B, Liu F F, et al. Lubrication Engineering, 2017, 42(3),71(in Chinese).
张恒, 王李波, 刘凡凡, 等.润滑与密封, 2017, 42(3),71.
62 He Y, Wang L B, Wang X L, et al. Journal of Synthetic Crystals, 2019,48(5),787(in Chinese).
何艳, 王李波, 王晓龙,等. 人工晶体学报, 2019,48(5),787.
63 Liu Y T, Zhang P, Sun N, et al. Advanced Materials, 2018,30(23),1707334.
64 Yue Y, Liu N, Ma Y, et al. ACS Nano, 2018, 12(5),4224.
65 Zhao S, Zhang H B, Luo J Q, et al. ACS Nano, DOI:10.1021/acsnano.8b05739.
66 Ma Y, Yue Y, Zhang H, et al. ACS Nano, 2018, 12(4),3209.
67 Li X P, Li Y, Li X, et al. Journal of Colloid and Interface Science, 2019, 542,54.
68 Park J, Kim M, Lee Y, et al. Science Advances, 2015, 1(9),1500661.
69 Wang K, Lou Z, Wang L, et al. ACS Nano, 2019, 13(8),9139.
70 Wang J, Mizuki T, Yuki T, et al. ACS Applied Materials & Interfaces,2018,10(36), 30689
71 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials, 2017, 27(9),1606066
72 Dong D, Ma J, Ma Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 123,222.
73 Yao W, Mao R, Gao W, et al. Carbon, 2020, 158,418.
74 Zhu M, Yue Y, Cheng Y, et al. Advanced Electronic Materials,2020, 6(2),1901064.
75 Song D, Li X, Li X P, et al. Journal of Colloid and Interface Science, 2019, 555,751.
76 Liu S, Lin Y, Wei Y, et al. Composites Science and Technology, 2017, 146,110.
77 Tian Q, Yan W, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(8),9710.
78 Zhang Y Z, Lee K H, Anjum D H, et al. Science Advances, 2018, 4(6),eaat0098.
79 Zhang L, Li H, Lai X, et al. ACS Applied Materials & Interfaces, 2020, 12(39),44360.
80 Pang Y, Tian H, Tao L, et al. ACS Applied Materials & Interfaces, 2016, 8(40),26458.
81 Tian Y, Wang D Y, Li Y T, et al. IEEE Transactions on Electron Devices, 2020,67(5), 2153.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[3] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[4] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[5] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[6] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[7] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[8] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[9] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[10] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[11] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[12] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[13] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[14] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[15] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed