Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20040130-10    https://doi.org/10.11896/cldb.20040130
  无机非金属及其复合材料 |
微波烧结微波介质陶瓷的研究进展
刘锦, 梁炳亮, 张建军, 艾云龙
南昌航空大学材料科学与工程学院,南昌 330063
Research Progress on Microwave Dielectric Ceramics Prepared via Microwave Sintering
LIU Jin, LIANG Bingliang, ZHANG Jianjun, AI Yunlong
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 1958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着通信行业的发展,尤其是5G商用时代的来临,微波介质陶瓷的开发与探索成了近年来的研究热点。目前通常采用常压固相烧结的方式来制备微波介质陶瓷,但烧结温度较高、加热速度慢,且烧结时间过长,不仅会导致资源的损耗,还可能导致晶粒的异常长大。为了降低陶瓷材料的烧结温度,通常会添加烧结助剂,如B2O3、CuO等,但加入烧结助剂会引入第二相从而影响微波介电性能。作为一种高效的烧结方法,微波烧结技术是在烧结过程中通过微波与材料粒子的相互作用或微波与基本微观结构耦合产生的热量进行加热,不仅能降低烧结温度、缩短烧结时间,还能改善材料的显微组织,因此,近年来微波烧结成为研究者关注的焦点。
采用微波烧结制备的微波介质陶瓷在各个领域中都有应用,如Mg2TiO4陶瓷用于多层电容器和微波谐振器,BaTiO3陶瓷用于多层陶瓷电容器(MLCC)和随机存取存储器(RAM),MgTiO3陶瓷用于微波滤波器、通信天线和微波频率全球定位系统,TiO2陶瓷用于电容器和低温共烧陶瓷基板等。不仅如此,采用微波烧结制备的微波介质陶瓷还表现出优异的化学稳定性和力学性能,如LiAlSiO4基陶瓷、MgO-B2O3-SiO2基陶瓷等在多层陶瓷基板与微波集成电路中都有广泛的应用。微波烧结技术为制备优异的材料提供了可能,还可用于在各种粉末的制备,实现性能的进一步提升。
本文综述了微波烧结制备微波介质陶瓷的研究进展,总结了常规烧结和微波烧结对材料性能的影响,并指出采用微波烧结制备的微波介质陶瓷目前存在的问题与发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘锦
梁炳亮
张建军
艾云龙
关键词:  微波烧结  微波介质陶瓷  微波介电性能  微波谐振器    
Abstract: With the gradual development of the communication industry, especially the advent of the 5G commercial era, the development and exploration of microwave dielectric ceramics have become a research hotspot in recent years. Normal pressure solid phase sintering is usually used to prepare microwave dielectric ceramics. However, this sintering method causes not only loss of resources but also abnormal growth of crystal grains, due to relatively high temperature, slow heating rate and long preparation time. In order to reduce the sintering temperature of the ceramic material, sintering additive (for example, B2O3 or CuO) was added, but the addition of sintering additive would introduce the second phase and deteriorate the microwave dielectric properties. As an efficient sintering method, microwave sintering can reduce the sintering temperature, shorten the sintering time and improve the microstructure of the material, because the materials are heated by the direct interaction of the microwave and the particles, or the coupling of microwave and the basic microstructure of materials. Therefore, microwave sintering has become the focus of many researchers.
Microwave dielectric ceramics prepared by microwave sintering have been applied into various fields. For example, Mg2TiO4 ceramic is used for multilayer capacitors and microwave resonators, BaTiO3 ceramic is used for multilayer ceramic capacitors (MLCC) and random access memory (RAM), MgTiO3 ceramic is used for microwaves filters, communication antennas and microwave frequency global positioning systems, and TiO2 ceramic is used for capacitors and low-temperature co-fired ceramic substrates. Besides that, the microwave dielectric ceramics prepared by microwave sintering also show the characteristics of excellent chemical stability and mechanical properties, such as LiAlSiO4-based ceramics, MgO-B2O3-SiO2-based ceramics, etc. These ceramic materials are widely used in multilayer ceramic substrates and microwave integrated circuits. Microwave sintering technology provides the possibility to prepare materials with excellent performance. Microwave sintering technology can also be used for the preparation of various powders to achieve further improvement of performance.
In this paper, the progress of microwave sintering in microwave dielectric ceramics is reviewed. The effects of conventional sintering and microwave sintering on properties are summarized. The current problems and development trends of microwave sintered microwave dielectric ceramics are pointed out.
Key words:  microwave sintering    microwave dielectric ceramic    microwave dielectric properties    microwave dielectric resonator
发布日期:  2022-02-10
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51664043;51861026);国家留学基金委(201708360036)
通讯作者:  lbl@nchu.edu.cn   
作者简介:  刘锦,2021年于南昌航空大学获工学硕士学位,主要研究方向为微波介质陶瓷,获2020年硕士研究生国家奖学金。
梁炳亮,2010年于福州大学获工学博士学位,讲师;主要研究方向为新型功能陶瓷材料、纳米能源材料与器件;发表论文30余篇,获授权发明专利3项。
引用本文:    
刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
LIU Jin, LIANG Bingliang, ZHANG Jianjun, AI Yunlong. Research Progress on Microwave Dielectric Ceramics Prepared via Microwave Sintering. Materials Reports, 2022, 36(3): 20040130-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040130  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20040130
1 Plourde J K, Ren C L. IEEE Transactions on Microwave Theory and Techniques, 1981, 29(8), 754.
2 Petzelt J, Kamba S, Kozlov G V, et al. Ferroelectrics, 1996, 176(1), 145.
3 Shih C, Li W, Tung K, et al. Journal of the American Ceramic Society, 2010, 93(9), 2448.
4 Liao Q, Li L, Zhang P, et al. Journal of Materials Research, 2011, 26(19), 2503.
5 Guo Y, Ohsato H, Kakimoto K. Journal of the European Ceramic Society, 2006, 26(10), 1827.
6 Ohsato H, Kagomiya I, Terada M, et al. Journal of the European Ceramic Society, 2010, 30(2), 315.
7 Kagomiya I, Sugihara J, Kakimoto K, et al. Journal of Electroceramics, 2009, 22(1), 327.
8 Su Y S, Jean J H. Japanese Journal of Applied Physics, 2008, 47(9), 7254.
9 Tzou W C, Yang C F, Chen Y C, et al. Journal of the European Ceramic Society, 2000, 20(7), 991.
10 Bafrooei H B, Nassaj E T, Hu C F, et al. Physica B, Condensed Matter, 2014, 454, 35.
11 Huang X, Liu X, Liu F, et al. Journal of Advanced Ceramics, 2017, 6(1), 50.
12 Li E, Zou M, Duan S, et al. Journal of Electronic Materials, 2014, 43(11), 3954.
13 Mercurio J P, Manier M, Frit B. Ferroelectrics, 1992, 127(1), 35.
14 Yoshida A, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2005, 25(12), 2897.
15 Noh J H, Jung H S, Lee J, et al. Journal of the European Ceramic Society, 2007, 27(8), 2937.
16 Chu L W, Hsiue G H, Chiang Y J, et al. Ferroelectrics, 2006, 332(1), 139.
17 Lee Y, Yeh Y, Tsai P. Journal of the European Ceramic Society, 2012, 32(8), 1725.
18 Croquesel J, Bouvard D, Chaix J, et al. Acta Materialia, 2016, 116, 53.
19 Zhang L X, Liu P, Su Z X. Materials Research Bulletin, 2006, 41(9), 1631.
20 Goldstein A, Kaplanb W D, Singurindi A. Journal of the European Cera-mic Society, 2002, 22, 1891.
21 Ramana M V, Kiran S R, Reddy N R, et al. Materials Chemistry and Physics, 2011, 126(1), 295.
22 Thridandapani R R, Folgar C E, Folz D C, et al. Journal of Nuclear Materials, 2009, 384(2), 153.
23 Liu H X, Ouyang S X. Microwave solid-phase synthesis methods and principles of inorganic materials, Science Press, China, 2006, pp.16 (in Chinese).
刘韩星,欧阳世翕. 无机材料微波固相合成方法与原理, 科学出版社, 2006, pp.16.
24 Ni E H. Microwave measurement of dielectric resonator, Science Press, China, 2006, pp.3 (in Chinese).
倪尔瑚. 介质谐振器的微波测量, 科学出版社, 2006, pp.3.
25 Li J G, Ikegami T, Lee J H, et al. Ceramics International, 2001, 27(4), 481.
26 Walker E H, Owens J W, Etienne M, et al. Materials Research Bulletin, 2002, 37(6), 1041.
27 Han D, Zhang J, Liu P, et al. Ceramics International, 2018, 44(10), 11101.
28 Obradović N, Fahrenholtz W G, Filipović S, et al. Ceramics Internatio-nal, 2019, 45(9), 12015.
29 Gómez I, Hernández M, Aguilar J, et al. Ceramics International, 2004, 30(6), 893.
30 Macaigne R, Marinel S, Goeuriot D, et al. Ceramics International, 2018, 44(17), 21107.
31 Yu J, Shen C Y. Electronic Components and Materials, 2015, 34(5), 1 (in Chinese).
余珺,沈春英. 电子元件与材料, 2015, 34(5), 1.
32 Zuo F, Badev A, Saunier S, et al. Journal of the European Ceramic Society, 2014, 34(12), 3103.
33 Li W B, Xi H H, Zhou D. Ceramics International, 2015, 41(7), 9063.
34 Benavente R, Borrell A, Salvador M D, et al. Ceramics International, 2014, 40(1), 935.
35 García M O, Fernández A, Khainakov S, et al. Scripta Materialia, 2010, 63(2), 170.
36 García M O, Kriven W M, Moya J S, et al. Journal of the American Ceramic Society, 2013, 96(7), 2039.
37 Benavente R, Salvador M D, Peñaranda-foix F L, et al. Ceramics International, 2015, 41(10), 13817.
38 García M O, Borrell A, Bittmann B, et al. Journal of the European Ceramic Society, 2011, 31(9), 1641.
39 George S, Anjana P S, Deepu V N, et al. Journal of the American Ceramic Society, 2009, 92(6), 1244.
40 Thomas D, Sebastian M T. Journal of the European Ceramic Society, 2012, 32(10), 2359.
41 Došler U, Kržmanc M M, Suvorov D. Ceramics International, 2012, 38(2), 1019.
42 Kržmanc M M, Došler U, Suvorov D. Journal of the European Ceramic Society, 2011, 31(13), 2211.
43 Sasikala T S, Suma M N, Mohanan P, et al. Journal of Alloys and Compounds, 2008, 461(1), 555.
44 Tsunooka T, Androua M, Higashida Y, et al. Journal of the European Ceramic Society, 2003, 23, 2573.
45 Keshavarz M, Ebadzadeh T, Banijamali S. Ceramics International, 2017, 43(12), 9259.
46 Surendran K P, Mohanan P, Sebastian M T. Journal of Solid State Che-mistry, 2004, 177(11), 4031.
47 Belous A, Ovchar O, Durilin D, et al. Journal of the American Ceramic Society, 2006, 89(11), 3441.
48 Bhuyan R K, Kumar T S, Pamu D. Ferroelectrics, 2017, 516(1), 173.
49 Huang C L, Chen J Y. Journal of the American Ceramic Society, 2009, 92(3), 675.
50 Xie Z P, Yang J L, Huang X D, et al. Journal of the European Ceramic Society, 1999, 19(3), 381.
51 Whittaker A G. Chemistry of Materials, 2005, 17(13), 3426.
52 Wang M N, Qiu T, Shen C H. Materials for Mechanical Engineering, 2009, 33(1), 23 (in Chinese).
王美娜,丘泰,沈春英. 机械工程材料, 2009, 33(1), 23.
53 Teoreanu I, Andronescu E, Folea A. Ceramics International, 1996, 22(4), 305.
54 Yang J, Xu W S. Inorganic Chemicals Industry, 2011, 43(4), 39 (in Chinese).
杨峻,徐旺生. 无机盐工业, 2011, 43(4), 39.
55 He Y Y, Tang X H, Zhou Y. Journal of Inorganic Materials, 2001, 16(6), 1139 (in Chinese).
何艳艳,唐霞辉,周毅. 无机材料学报, 2001, 16(6), 1139.
56 Okada T, Narita T, Nagai T, et al. American Mineralogist, 2008, 93(1), 39.
57 Linton J A, Fei Y W, Navrotsky A. American Mineralogist, 1999, 84(10), 1595.
58 Zhou X H, Yuan Y, Xiang L C, et al. Journal of Materials Science, 2007, 42(16), 6628.
59 Ferreira V M, Baptista J L, Petzelt J, et al. Journal of Materials Research, 1995, 10(9), 2301.
60 Jantunen H, Rautioaho R, Uusimäki A, et al. Journal of the European Ceramic Society, 2000, 20(14), 2331.
61 Sirugudu R K, Vemuri R K M, Murty B S. Journal of Microwave Power and Electromagnetic Energy, 2013, 47(4), 262.
62 Rabha S, Chikkala A K, Dobbidi P. Ferroelectrics, 2017, 519(1), 145.
63 Zhao L, Shen C Y, Qiu T. Journal of Inorganic Materials, 2011, 26(2), 219.
64 Zhao L, Hu Y Y, Li D, et al. Piezoelectrics and Acoustooptics, 2017, 39(5), 707 (in Chinese).
赵莉,胡玉叶,李丹,等. 压电与声光, 2017, 39(5), 707.
65 Zhao L, Hu Y Y, Li D, et al. Journal of Synthetic Crystals, 2017, 46(3), 526 (in Chinese).
赵莉,胡玉叶,李丹,等. 人工晶体学报, 2017, 46(3), 526.
66 Khamman O, Jainumpone J, Watcharapasorn A, et al. Journal of the Korean Physical Society, 2016, 69(3), 365.
67 Pullar R C. Journal of the American Ceramic Society, 2009, 92(3), 563.
68 Gao F, Liu J J, Hong R Z, et al. Ceramics International, 2009, 35(7), 2687.
69 Bafrooei H B, Nassaj E T, Hu C F, et al. Physica B, Condensed Matter, 2014, 454, 35.
70 Zhang Y C, Li L T, Yue Z X, et al. Materials Science and Engineering, B, 2003, 99(1), 282.
71 Wang J, Yue Z X, Gui Z L, et al. Journal of Alloys and Compounds, 2005, 392(1), 263.
72 Yan Z, Huang J L, Gu Y J, et al. Electronic Components and Materials 2013, 32(3), 26 (in Chinese).
晏忠,黄金亮,顾永军,等. 电子元件与材料, 2013, 32(3), 26.
73 Bafrooei H B, Nassaj E T, Ebadzadeh T, et al. Journal of Materials Science, Materials in Electronics, 2014, 25(4), 1770.
74 Du Y, Huang J L, Gu Y J, et al. Journal of Functional Materials and Devices, 2015, 21(4), 56 (in Chinese).
杜勇,黄金亮,顾永军,等. 功能材料与器件学报, 2015, 21(4), 56.
75 Asadian K, Shahgholi N, Ghafari S, et al. Journal of Electronic Mate-rials, 2018, 47(12), 7151.
76 Shahgholi N, Asadian K, Ebadzadeh T. Ceramics International, 2014, 40(9), 14335.
77 Abdul Khalam L, Sebastian M T. Journal of the American Ceramic Society, 2007, 90(5), 1467.
78 Li J M, Qiu T. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(2), 6 (in Chinese).
李家茂,丘泰. 南京工业大学学报(自然科学版), 2012, 34(2), 6.
79 Guo R Y, Bhalla A S, Cross L E. Journal of Applied Physics, 1994, 75(9), 4704.
80 Lu C H, Tsai C C. Journal of Materials Research, 1996, 11(5), 1219.
81 Ravichandran D, Meyer R, Roy R, et al. Materials Research Bulletin, 1996, 31(7), 817.
82 Yoon K H, Kim D P, Kim E S. Journal of the American Ceramic Society, 1994, 77(4), 1062.
83 Kim B J, Kim M H, Nahm S, et al. Journal of the European Ceramic So-ciety, 2007, 27(2), 1065.
84 Jiang S Z, Yue Z X, Shi F. Journal of Alloys and Compounds, 2015, 646, 49.
85 Vaidhyanathan B, Agrawal D K, Shrout T R, et al. Materials Letters, 2000, 42(3), 207.
86 Desu S B, O'Bryan H M. Journal of the American Ceramic Society, 1985, 68(10), 546.
87 Liu S J, Merrick V A, Newman N. Journal of the European Ceramic So-ciety, 2006, 26(15), 3273.
88 Varma M R, Biju S, Sebastian M T. Journal of the European Ceramic Society, 2006, 26(10), 1903.
89 Sindam B, Raju K C J. Materials Today, Proceedings, 2016, 3(6), 2107.
90 Sindam B, Raju K C J. The European Physical Journal B, 2016, 89(4), 1.
91 Tamura H, Konoike T, Sakabe Y, et al. Communications of the American Ceramic Society, 1984, 67(4), c59.
92 Lu C H, Tsai C C. Materials Science and Engineering, 1998, 55(1), 95.
93 Sindam B, Sharma P K, Raju K C J. Materials Research Express, 2014, 1(1), 15701.
94 Kim M H, Nahm S, Lee W S, et al. Japanese Journal of Applied Physics, 2005, 44(5A), 3091.
95 Yang J I, Nahm S, Choi C H, et al. Journal of the American Ceramic Society, 2002, 85(1), 165.
96 Sindam B, Pundareekam G J, James R K C. Materials Today, Procee-dings, 2016, 3(6), 2101.
97 Pullar R C, Penn S J, Wang X, et al. Journal of the European Ceramic Society, 2009, 29(3), 419.
98 Penn S J, Alford N M, Templeton A, et al. Journal of the American Ceramic Society, 2005, 80(7), 1885.
99 Ichinose N, Shimada T. Journal of the European Ceramic Society, 2006, 26(10), 1755.
100 Fu M S, Liu X Q, Chen X M. Journal of the European Ceramic Society, 2008, 28(3), 585.
101 Naghib Z H, Glitzky C, Oesterle W, et al. Journal of the European Ceramic Society, 2011, 31(4), 589.
102 Ianculescu A C, Vasilescu C A, Crisan D, et al. Materials Characterization, 2015, 106, 195.
103 Pithan C, Hennings D, Waser R. International Journal of Applied Cera-mic Technology, 2005, 2(1), 1.
104 Sharmaa P, Kumarb P, Kundua R S, et al. Ceramics International, 2015, 41(10), 13425.
105 Kishi H, Mizuno Y, Chazono H. Japanese Journal of Applied Physics, 2003, 42(1), 1.
106 Chandrasekhar M, Kumar P. Ceramics International, 2016, 42(9), 10587.
107 Pang L X, Wang H, Zhou D, et al. Journal of Materials Science, Mate-rials in Electronics, 2010, 21(12), 1285.
108 Yan M F, Rhodes W W. Applied Physics Letters, 1982, 40(6), 536.
109 Chao S, Dogan F. International Journal of Applied Ceramic Technology, 2011, 8(6), 1363.
110 Wersing W. Current Opinion in Solid State and Materials Science, 1996, 1(5), 715.
111 Templeton A, Wang X R, Penn S J, et al. Journal of the American Ceramic Society, 2000, 83(1), 95.
112 Waser R, Baiatu T, Härdtl K H. Materials Science and Engineering, 1989, 109, 171.
113 Jung S, Kim J H. Korean Journal of Chemical Engineering, 2010, 27(2), 645.
114 Eastman J A, Sickafus K E, Katz J D, et al. Mrs Online Proceedings Library Archive, 1990, 189, 273.
115 Xie Z P, Fan X D, Huang Y. Journal of Materials Research, 1998, 13(12), 3417.
116 Marinel S, Choi D H, Heuguet R, et al. Ceramics International, 2013, 39(1), 299.
117 Chen X M, Li Y. Journal of the American Ceramic Society, 2002, 85(3), 579.
118 Okudera H, Nakamura H, Toraya H, et al. Journal of Solid State Che-mistry, 1999, 142, 336.
119 Xu Y B, He Y Y. Ceramics International, 2002, 28(1), 75.
120 Tan Y, Shen C Y, Qiu T. Piezoelectrics and Acoustooptics, 2010, 32(2), 301 (in Chinese).
谭颖,沈春英,丘泰. 压电与声光, 2010, 32(2), 301.
121 Huang C L, Tsai J T, Materials Research Bulletin, 2001, 36(3), 547.
122 Li J M, Qiu T. International Journal of Minerals, Metallurgy and Mate-rials, 2012, 19(3), 245.
[1] 张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞. NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究[J]. 材料导报, 2022, 36(1): 20090353-10.
[2] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[3] 王瑞虎, 杨军, 邹德宁, 胡鹏, 向炜成. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 35(23): 23153-23161.
[4] 罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
[5] 李保卫, 李鑫, 崔俊杰, 张宇轩, 张雪峰, 贾晓林, 欧阳顺利. 微波烧结制备玻璃陶瓷的研究进展[J]. 材料导报, 2019, 33(Z2): 189-197.
[6] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[7] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed