Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20060143-5    https://doi.org/10.11896/cldb.20060143
  金属与金属基复合材料 |
双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究
汤荣华1,2, 冯曰海1,2, 刘思余3, 陈琪1
1 南京理工大学材料科学与工程学院,南京 210094
2 南京理工大学,工业和信息化部受控电弧增材制造与焊接重点实验室,南京 210094
3 上海航天精密机械研究所,上海 201600
Microstructure and Characteristics of High Nitrogen Austenitic Stainless Steel Component with High-strength and High-hardness Deposited by Double-wire and Plasma Arc Additive Manufacturing Process
TANG Ronghua1,2, FENG Yuehai1,2, LIU Siyu3, CHEN Qi1
1 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 MIIT Key Laboratory of Intelligent Controlled-arc Additive Manufacturing, Nanjing University of Science and Technology, Nanjing 210094, China
3 Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600, China
下载:  全 文 ( PDF ) ( 8041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对等离子单填丝增材制造电弧热量利用率低和熔丝效率低,容易造成增材金属过热的问题,以高氮钢丝材为熔化材料,采用单电弧双填丝共熔池的等离子弧增材制造工艺制备了高氮钢直壁体试样。采用游标卡尺、光学显微镜、扫描电镜和力学性能试验等手段,分别对单填丝和双填丝两种工艺增材直壁体的成型尺寸、熔敷效率、显微组织、力学性能和断裂形式进行了对比检测分析。然后详细考察了丝材熔敷量增加对试样组织和力学性能的影响,并分析双填丝等离子弧增材制造高强高硬高氮钢构件的组织变化规律和性能变化规律。结果表明,相对于单填丝增材工艺,在同样的增材电流下,双填丝增材工艺中总填丝速度可以成倍增加,分层更加清晰,平均有效熔敷效率提高92%。试样的显微组织大部分为平行增材方向奥氏体柱状树枝晶,存在少量的δ铁素体和弥散分布的氮化物,少量奥氏体树枝晶生长的方向出现不一致。在同样的电弧进行速度下,双填丝等离子弧增材制造的试样的抗拉强度均有明显提升,最大提升可达到44 MPa;断后伸长率均有增加,最高提升了9.4%。试样的显微硬度比单填丝增材试样的显微硬度略有提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤荣华
冯曰海
刘思余
陈琪
关键词:  高氮钢  双填丝  等离子弧增材制造  组织和性能  熔敷效率    
Abstract: The low utilization rate of plasma arc and low deposition rate of single-wire and plasma arc additive manufacturing (SW-PAM), which is easy to cause overheating of the deposited layers. Therefore, the plasma arc additive manufacturing process with double wire melted into eutectic pool by single arc was used to manufacture the HNS thin wall samples, in which the high nitrogen austenitic stainless steel (HNS) wire was used as the filling wire. Then sizes of samples, deposition rate, microstructures, mechanical properties and fracture modes of HNS components with high-strength and high-hardness were tested and analyzed by vernier caliper, optical microscope, SEM and mechanical testing machine compared with the HNS thin wall samples fabricated by SW-PAM process. Moreover, the influence of the increase of volume of wire on the microstructures and mechanical properties was investigated in detail. Furthermore, the microstructure evolution and property change mechanism of HNS thin wall samples deposited by double-wire and plasma arc additive manufacturing (DW-PAM) were revealed. Experiment results show that the total wire feeding speed of DW-PAM process can be multiplied, and the stratification is clearer, besides, the average effective deposition rate is increased by 92% under the same deposited current in contrast to the SW-PAM deposited components. In addition, the microstructure of samples composed of a large quantity of austenite columnar dendrites with parallel additive direction, few d-ferrite and some dispersed nitrides, and the growth direction of few austenite grains is inconsistent can be observed in. Meanwhile, the ultimate tensile strength of HNS thin wall samples deposited by DW-PAM process is increased to a maximum of 44 MPa, and the elongation is also increase, with a maximum increase of 9.4%. The microhardness testing results expressed that the microhardness of samples fabricated by DW-PAM process is slightly higher than that of SW-PAM deposited components.
Key words:  high nitrogen austenitic stainless steel (HNS)    double-wire    plasma arc additive manufacturing    microstructure and mechanical property    deposition rate
发布日期:  2022-02-10
ZTFLH:  TG456.2  
基金资助: 国防创新特区项目(17-H863);装备预先研究项目(41423050125)
通讯作者:  fyh@njust.edu.cn   
作者简介: 
汤荣华,2018年毕业于南京理工大学,获得材料成型及控制工程学士学位,现为南京理工大学材料科学与工程学院硕士研究生,导师冯曰海。主要从事等离子弧增材制造、先进焊接方法及工艺方面的研究。
冯曰海,工学博士,南京理工大学教授,博士研究生导师。2006年毕业于北京工业大学机械电子工程专业。2014—2015年在英国克兰菲尔德大学激光与焊接研究中心进行访问合作研究。现主要从事先进焊接方法与工艺、受控电弧增材制造(3D打印)方法与工艺、机器人自动化装备与工艺、电弧过程传感与智能控制等方向的研究工作,专注从事机器人自动化焊接技术20余年。获得国家授权发明专利20余项,发表SCI/EI收录论文20余篇,获得江苏省科学技术成果奖二等奖1项,获得兵器科技进步二等奖1项。
引用本文:    
汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
TANG Ronghua, FENG Yuehai, LIU Siyu, CHEN Qi. Microstructure and Characteristics of High Nitrogen Austenitic Stainless Steel Component with High-strength and High-hardness Deposited by Double-wire and Plasma Arc Additive Manufacturing Process. Materials Reports, 2022, 36(3): 20060143-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060143  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20060143
1 Vashishtha H, Taiwade R V, Sharma S, et al. Journal of Manufacturing Processes 2017, 25, 49.
2 Ning J, Na S J, Wang C, et al. Journal of Materials Research and Technology 2021,13, 1841.
3 Li J, Li H, Liang Y, et al. Corrosion Science, 2020, 166, 108.
4 Yang D, Huang Y, Fan J, et al. Journal of Manufacturing Processes, 2021, 61, 261.
5 Cong B, Qi Z, Qi B, et al. Applied Sciences, 2017, 7(3), 275.
6 Horgar A, Fostervoll H, Nyhus B, et al. Journal of Materials Processing Technology, 2018, 259, 68.
7 Feng Y, Zhan B, He J, et al. Journal of Materials Processing Technology, 2018, 259, 206.
8 Sun H Y, Cong B Q, Qi Z W, et al. Rare Metal Materials and Enginee-ring, 2017(8), 2203 (in Chinese).
孙红叶, 从保强, 祁泽武,等.稀有金属材料与工程, 2017(8), 2203.
9 Abe T, Sasahara H. Precision Engineering, 2016, 45, 387.
10 Wu C S, Huo Y S. Journal of Manufacturing Processes, 2013, 15(4), 593.
11 Liao J S. ISIJ International, 2001, 41(5), 460.
12 Xu J J, Wang K H, Peng Y, et al. Marine Technology, 2016(1), 55 (in Chinese).
徐娟娟, 王克鸿, 彭勇, 等.造船技术, 2016(1), 55.
[1] 郑江鹏, 初铭强, 温树文, 张书彦, 张鹏, 钟寿军, 张志明, 林晏民, 胡寿浩. 1215MS低碳高硫易切削钢盘条冷拉拔前后组织及性能[J]. 材料导报, 2021, 35(z2): 443-447.
[2] 高杨, 牛永吉, 田建军, 张志伟, 安宁. 耐低温冲击高强高韧合金的组织与性能[J]. 材料导报, 2020, 34(Z1): 420-426.
[3] 孙跃, 冯曰海, 刘思余, 王克鸿. 大厚度高氮钢多层多道等离子弧增材构件的组织与性能分析[J]. 材料导报, 2020, 34(22): 22118-22123.
[4] 张朝磊, 魏旸, 方文, 苗红生, 巴鑫宇, 刘雅政. 谐波减速器特殊钢材质柔轮的组织和力学性能分析[J]. 材料导报, 2018, 32(16): 2842-2846.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed