Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 21110131-7    https://doi.org/10.11896/cldb.21110131
  生物医用材料 |
季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能
惠爱平1, 马梦婷2, 杨芳芳1, 康玉茹1, 王爱勤1
1 中国科学院兰州化学物理研究所甘肃省黏土矿物应用研究重点实验室,兰州 730000
2 兰州大学第二医院检验医学中心,兰州 730030
Antibacterial Activity of Quaternized Chitosan Modified ZnO/Attapulgite Nanocomposites
HUI Aiping1, MA Mengting2, YANG Fangfang1, KANG Yuru1, WANG Aiqin1
1 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 11215KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凹凸棒石(APT)一维纳米棒晶在功能载体方面具有广阔的应用前景。本研究在凹凸棒石表面负载ZnO纳米粒子的基础上,采用季铵化壳聚糖进行改性,通过调控复合材料表面电荷进而提升抗菌性能。采用XRD、FESEM、TEM、EDS和BET对ZnO/APT纳米复合材料进行结构表征,采用 FTIR和Zeta电位对季铵化壳聚糖改性ZnO/APT纳米复合材料进行改性分析。研究结果表明,ZnO纳米粒子均匀担载在凹凸棒石表面,季铵化壳聚糖成功改性了ZnO/APT复合材料。最小抑菌浓度试验表明,5%季铵化壳聚糖改性ZnO/APT纳米复合材料对金黄色葡萄球菌和大肠埃希菌值分别为0.25 mg/mL和0.5 mg/mL。细胞毒性试验结果表明,在测试浓度范围内,季铵化壳聚糖改性纳米复合材料对HeLa细胞的存活率超过97.3%,具有良好的生物相容性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠爱平
马梦婷
杨芳芳
康玉茹
王爱勤
关键词:  季铵化壳聚糖  ZnO  凹凸棒石  抗菌性能    
Abstract: One-dimensional nanorods of attapulgite (APT) have broad applications prospects in functional carriers. In this work, APT as a carrier to load ZnO nanoparticles, and quaternized chitosan was used to modify the surface charge of ZnO/APT nanocomposites to enhance antibacterial activity. The structure analysis of ZnO/APT nanocomposites were characterized by XRD, FESEM, TEM, EDS and BET, the quaterni-zed chitosan modified ZnO/APT were characterized by FTIR and Zeta potential. The results indicated that ZnO nanoparticles were evenly loaded on the surface of APT, and also the nanocomposites were successfully modified by quaternized chitosan. The minimum inhibitory concentration (MIC) results indicated that 5% quaternized chitosan modified ZnO/APT nanocomposites were 0.25 mg/mL for Staphylococcus aureus and 0.5 mg/mL for Escherichia coli, respectively. Meanwhile, the cytotoxicity test showed that the survival rate of quaternized chitosan modified ZnO/APT to HeLa cells was more than 97.3%, which displayed good biocompatibility.
Key words:  quaternary ammonium chitosan    ZnO    attapulgite    antibacterial activity
发布日期:  2022-02-10
ZTFLH:  TB34  
  TB332  
基金资助: 中国科学院 STS 区域重点项目(KFJ-STS-QYZX-086);甘肃省自然科学基金重大项目(18JR4RA001)
通讯作者:  aqwang@licp.cas.cn21110131-1   
作者简介:  惠爱平,中国科学院兰州化学物理研究所,助理研究员。2016年6月毕业于陕西科技大学环境科学与工程学院,获理学硕士学位。2016年7月入职中国科学院兰州化学物理研究所,主要从事凹凸棒石基抗菌材料的构筑及协同抗菌性能和pH响应性释放的天然植物小分子和天然植物提取物抵抗预防的递送新策略。主持包括国家自然科学基金青年基金和江苏宁淮重点农业技术推广等项目。发表SCI论文10余篇(ESI高被引论文1篇),EI论文3篇;申请发明专利20余件,授权10件;参编著作1部(1章)。
王爱勤,中国科学院兰州化学物理研究所,研究员、博士研究生导师,兰州大学兼职教授。1986年7月毕业于兰州大学化学系,1999年6月于中科院兰州化学物理研究所获博士学位,2002年在日本作JSPS高级访问学者。主要从事黏土矿物功能材料制备及产业化应用。在国内外刊物上发表论文600余篇,出版专著7部;申请发明专利180余件,授权120余件。获2010年度国家科技进步二等奖和2018年度国家技术发明二等奖,第二届全国创新争先奖和何梁何利基金科学与技术创新奖。
引用本文:    
惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
HUI Aiping, MA Mengting, YANG Fangfang, KANG Yuru, WANG Aiqin. Antibacterial Activity of Quaternized Chitosan Modified ZnO/Attapulgite Nanocomposites. Materials Reports, 2022, 36(3): 21110131-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110131  或          http://www.mater-rep.com/CN/Y2022/V36/I3/21110131
1 Wang Y, Yang Y N, Shi Y R, et al. Advanced Materials, 2020, 32, 1904106.
2 Liu J, Rojas-Andrade M D, Chata G, et al. Nanoscale, 2018, 10, 158.
3 Yao X Y, Tang X N, Wang X N, et al. Materials Reports, 2021, 35(1), 1105(in Chinese).
姚希燕, 唐晓宁, 王晓楠, 等. 材料导报, 2021, 35(1), 1105.
4 Liao C, Li Y, Tjong S C. Nanomaterials, 2020, 10, 124.
5 Panchal P, Paul D R, Sharma A, et al. Journal of Colloid and Interface Science, 2020, 563, 370.
6 Shu Z, Zhang Y, Ouyang J, et al. Applied Clay Science, 2017, 420, 833.
7 Guan G L, Zhang L N, Zhu J X, et al. Journal of Hazard Materials, 2021, 402, 123542.
8 Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A. International Journal of Biological Macromolecules, 2019, 124, 922.
9 Motshekga S C, Ray S S, Onyango M S, et al. Journal of Hazard Materials, 2013, 262, 439.
10 Pouraboulghasem H, Ghorbanpour M, Shayegh R, et al. Journal of Central South University, 2016, 23, 787.
11 Peng H X, Liu X H, Tang W, et al. Science Reports, 2017, 7, 2250.
12 Liu J L, Wang Y H, Fan X Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126059.
13 Dědková K, Janíková B, Matějová K, et al. Journal Photochemistry and photobiology B: Biology, 2015, 148, 113.
14 Pourabolghasem H, Ghorbanpour M, Shayegh R. Journal of Physical Science, 2016, 27, 1.
15 Hui A P, Yan R, Wang W B, et al. Carbohydrate Polymers, 2020, 247, 16685.
16 Huo C L, Yang H M. Applied Clay Science, 2010, 50, 362.
17 Wang A Q, Mu B, Zhang J P, et al. Attapulgite-based new functional materials and applications, Science Press, China,2021, pp. 6 (in Chinese).
王爱勤, 牟斌, 张俊平, 等. 凹凸棒石新型功能材料及应用, 科学出版社, 2021, pp. 6.
18 Ren Y H, Zhao X X, Qin W, et al. Materials Reports, 2018, 32(S2), 199 (in Chinese).
任亚辉, 赵兴绪, 秦文, 等. 材料导报, 2018, 32(S2), 199.
19 Dong W K, Lu Y S, Wang W B, et al. Chemical Engineering Journal, 2020, 382, 122984.
20 Hui A P, Dong S Q, Kang Y R, et al. Nanomaterials, 2019, 9, 1453.
21 Hui A P, Yan R, Mu B, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3808.
22 Ma J Z, Liu J L, Bao Y, et al. Ceramics International, 2013, 39, 2803.
23 Hui A P, Ma J Z, Liu J L, et al. Journal of Alloys and Compounds, 2016, 696, 639.
24 Wang, X W, Mu B, Hui A P, et al. Dyes Pigments, 2018, 149, 521.
25 Cai X, Zhang J L, Ouyang Y, et al. Langmuir, 2013, 29, 5279.
26 Rekha S, Anila E I. Materials Letters, 2019, 236, 637.
[1] 关玉琴, 侯清玉, 谷玉兰. 不同价态的Mn和点空位对ZnO体系光学性能的影响[J]. 材料导报, 2022, 36(2): 20110265-7.
[2] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[3] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[4] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[5] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[6] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[7] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[8] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[11] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[12] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[13] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[14] 潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
[15] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed