Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10018-10023    https://doi.org/10.11896/cldb.19050066
  无机非金属及其复合材料 |
Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究
胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明
西南民族大学电气信息工程学院&信息材料四川省高校重点实验室,成都 610041
Synthesis of Ag-loaded CuO-ZnO Nanocomposites by a Facile Sol-Gel Method for Enhanced Photocatalytic Activity
HU Wenyu, WANG Xiaoyi, YUAN Huan, LIU Yutong, CHEN Yu, ZHANG Qiuping, ZHANG Jiaxi, LUO Kaiyi, LI Jing, XU Ming
Key Laboratory of Information Materials of Sichuan Province, School of Electrical and Information Engineering, Southwest Minzu University, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 7385KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 利用太阳能光催化降解处理水污染,是修复环境相关成本最小的一种可靠方式,但由于光降解过程复杂,开发一种高性能、可回收、低成本的光催化系统十分具有现实意义。本工作采用简易的溶胶-凝胶法合成了一种Ag沉积CuO-ZnO纳米光催化剂,使用高浓度铜离子掺杂的方式获得了CuO-ZnO异质结构。通过多种测试手段对样品进行表征,X射线衍射(XRD)测试证实了CuO与Ag的存在。扫描电子显微镜(SEM)测试表明ZnO颗粒形貌受Ag沉积的影响。X射线光电子能谱(XPS)证明Ag的沉积影响了表面Cu2+向Cu+的转变。在光照情况下,少量(2%,摩尔分数)Ag修饰的CuO-ZnO对有机污染物亚甲基蓝(MB)和甲基橙(MO)水溶液的光催化降解效率较未修饰样品更高。光催化性能的改善主要归因于多组分体系中可见光利用率的提升、光生电荷的有效分离、形貌结构的优化及表面化学态的转变,三元复合光催化体系中优异的光催化性能、低贵金属使用量和可回收性,为水污染修复提供了一种有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡文宇
王笑乙
袁欢
刘禹彤
陈雨
张秋平
张嘉羲
罗凯怡
李靖
徐明
关键词:  光催化  溶胶-凝胶法  Ag沉积  CuO-ZnO异质结  可变价金属离子    
Abstract: Photocatalytic degradation of water pollution by solar energy is a reliable way for environment remediation with minimum associated costs. However, developing a photocatalytic system with high performance, recyclability and low cost has become a practical problem due to the complexity of photodegradation process. We demonstrated a Ag-loaded CuO-ZnO nano-photocatalysts by a facile sol-gel method, the CuO-ZnO structure was obtained by doping with high concentration of Cu ions.The samples were characterized by a variety of test methods. XRD confirmed the presence of CuO and Ag. SEM showed that the morphology of ZnO particles was affected by Ag deposition. XPS showed that Ag deposition affected the transition from Cu2+ to Cu+. Under the simulated sunlight and ultraviolet light, small trace(2mol%) of Ag modified CuO-ZnO exhibited higher photocatalytic activity than that of the unmodified sample in the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) aqueous solutions of organic pollutants. The improvement of photocatalytic performance is mainly attributed to the enhancement of visible light utilization, effective separation of photogenic charge, optimization of morphology and structure, and conversion of surface chemical states, the ternary composite photocatalytic system providing an effective way for water pollution restoration by its excellent photocatalytic performance, low precious metal usage and recyclability.
Key words:  photocatalytic    sol-gel method    Ag-loaded    CuO-ZnO heterojunction    valence variable metal ion
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  O614  
基金资助: 四川省学术带头人培养基金项目(26727502);四川省科技厅应用基础研究重点项目(2017JY0349);西南民族大学研究生创新型科研项目(CX2019SZ21)
通讯作者:  徐明,西南民族大学教授。2000年7月毕业于中国科学院物理研究所,获凝聚态物理专业博士学位,先后在奥地利、比利时、 新加坡从事博士后研究。已在物理或材料的国际主流刊物上发表SCI学术论文100多篇,授权7项中国专利。其中以第一或通讯作者身份完成的部分工作已被写入3部国际权威的专业工具书和13部国际学术专著中。hsuming_2001@aliyun.com   
作者简介:  胡文宇,西南民族大学材料学硕士研究生,主要从事氧化物功能材料的研究。
引用本文:    
胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
HU Wenyu, WANG Xiaoyi, YUAN Huan, LIU Yutong, CHEN Yu, ZHANG Qiuping, ZHANG Jiaxi, LUO Kaiyi, LI Jing, XU Ming. Synthesis of Ag-loaded CuO-ZnO Nanocomposites by a Facile Sol-Gel Method for Enhanced Photocatalytic Activity. Materials Reports, 2020, 34(10): 10018-10023.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050066  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10018
1 Ani I J, Akpan U G, Olutoye M A, et al. Journal of Cleaner Production, 2018, 205, 930.
2 Xiao H, Zhang W Y, Yao Q S, et al. Applied Catalysis B: Environmental, 2019, 244,719.
3 Khan H R, Murtaza G, Choudhary M A, et al. Solar Energy, 2018, 173, 875.
4 Raji R, Gopchandran K G. Journal of Hazardous Materials, 2019, 368,345.
5 Chiu Y H, Chang K D, Hsu Y J. Journal of Materials Chemistry A, 2018, 6(10),4286.
6 Vaiano V, Matarangolo M, Murcia J J, et al. Applied Catalysis B: Environmental, 2018, 225, 197.
7 Vignesh S, Sundar J K. Applied Surface Science, 2018, 449,617.
8 Xie Q S, Ma Y T, Wang X P, et al. ACS Nano, 2016, 10(1),1283.
9 Vaiano V, Iervolino G, Rizzo L. Applied Catalysis B: Environmental, 2018, 238,471.
10 Vasilaki E, Vamvakaki M, Katsarakis N. Langmuir, 2018, 34(31),9122.
11 Han C, Quan Q, Chen H M, et al. Small, 2017, 13(14),1602947.
12 Raji R, Gopchandran K G. Journal of Hazardous Materials, 2019, 368, 345.
13 Georgekutty R, Seery M K, Hsu Y J. Journal of Physical Chemistry C, 2008, 112(35), 13563.
14 Chen Y, Yu F, Liu Y T, et al. Materials Review B:Research Papers, 2017, 31(12), 120(in Chinese).
陈雨, 余飞,刘禹彤,等. 材料导报: 研究篇, 2017, 31(12), 120.
15 Liu Y T, Zhang Q P, Xu M, et al. Applied Surface Science, 2019, 476, 632.
16 Wu Z H, Xu M, Duan W Q, et al. Acta Physica Sinica,2012, 61(13),137502(in Chinese).
吴忠浩, 徐明, 段文倩, 等. 物理学报, 2012, 61(13), 137502.
17 Yuan H, Xu M, Dong X S. Materials Letters, 2015, 154, 94.
18 Zhang J X, Yuan H, Liu Y T, et al. Materials Review B:Research Papers, 2019, 33(3), 941(in Chinese).
张嘉羲, 袁欢,刘禹彤,等. 材料导报: 研究篇, 2019, 33(3),941.
19 Kuriakose S, Satpati B, Mohapatra S. Physical Chemistry Chemical Phy-sics, 2015, 17(38), 25172.
20 Malwal D, Gopinath P. Chemistry Select, 2017, 2(17), 4866.
21 Xu K C, Wu J, Tan C F, et al. Nanoscale, 2017, 9(32),11574.
22 Sudakar C, Thakur J S, Lawes G, et al. Physical Review B, 2007, 75(5), 054423.
23 Peng X P, Lan W, Tan Y S, et al. Acta Physica Sinica,2004, 53(8), 2705(in Chinese).
朋兴平, 兰伟, 谭永胜, 等. 物理学报, 2004, 53(8), 2705.
24 Li B, Huang L, Zhou M, et al. Journal of Materials Research, 2013, 28(24),3384.
25 Kuang P Y, Su Y Z, Xiao K, et al. ACS Applied Materials & Interfaces, 2015, 7(30),16387.
26 Rooydell R, Brahma S, Wang R C, et al. Journal of Alloys and Compounds, 2017, 691, 936.
27 Wang J P, Wang Z Y, Huang B B, et al. ACS Applied Materials and Interfaces, 2012, 4(8), 4024.
28 Zhang Q P, Xu X N, Liu Y T, et al. Scientific Reports, 2017, 7, 46424.
29 Xu P S, Sun Y M, Shi C S, et al. Science in China Series A-Mathema-tics, 2001, 44, 1174.
30 Li A X, Bi H, Liu Y M, et al. Chinese Journal of Luminescence, 2008(2), 79(in Chinese).
李爱侠, 毕红,刘艳美,等. 发光学报, 2008(2), 79.
31 Han N, Wu X F, Chai L Y, et al. Sensors and Actuators B: Chemical, 2010,150(1), 230.
32 Serra A, Zhang Y, Sepulveda B, et al. Applied Catalysis B: Environmental, 2019, 248,129.
33 Kamarulzaman N, Kasim M F, Chayed N F. Results in Physics, 2016, 6, 217.
[1] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[2] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[3] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[4] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[5] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[6] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[7] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[10] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[11] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[12] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[13] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[14] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[15] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed