Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20110265-7    https://doi.org/10.11896/cldb.20110265
  无机非金属及其复合材料 |
不同价态的Mn和点空位对ZnO体系光学性能的影响
关玉琴1,2, 侯清玉1,2,3, 谷玉兰1
1 内蒙古工业大学理学院,呼和浩特 010051
2 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
3 内蒙古薄膜与涂料重点实验室,呼和浩特 010051
Effect of Mn and Point Vacancies with Different Valence States on the Optical Properties of ZnO System
GUAN Yuqin1,2,HOU Qingyu1,2,3, GU Yulan1
1 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
2 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
3 Inner Mongolia Key Laboratory of Thin Film and Coatings, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 11226KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,因为实验上点空位的精确测量调控对ZnO∶Mn体系物理性质的影响具有挑战性,而第一性原理解决此问题有一定的优势,所以用第一性原理研究了Mn2+/3+/4+掺杂和氧空位或锌空位(VO/VZn) 对ZnO的结构稳定性、电子结构和光学性质的影响。研究结果显示,所有体系在富氧条件下的形成能比富锌条件下的形成能低,说明ZnO∶Mn在富氧条件下容易形成稳定结构。在Mn2+掺杂的含VO/VZn的ZnO体系中,VO价态越低,体系形成能越低,结构越稳定;而对于VZn价态则相反。在Mn2+/3+/4+掺杂的含中性空位(VO0/VZn0)的ZnO中,Mn的价态越高,体系形成能越低,结构越稳定。Mn2+掺杂的含VO0/VZn0的ZnO体系的光学带隙变窄,在可见光范围内吸收光谱红移。其中,VO0杂质能级和费米能级部分重叠形成陷阱效应,更有利于产生电子-空穴对。此外,含VO0体系在360~509 nm内的吸收强度最大,而含VZn0体系在509~760 nm范围内的吸收强度最大。ZnO∶Mn体系对可见光的响应主要由Mn、Zn和O离子之间的sp-d相互作用和Mn掺杂、VO0/VZn0引导的体系自旋极化引起。因此,含VO0/VZn0的ZnO∶Mn体系是有较好应用前景的光催化材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关玉琴
侯清玉
谷玉兰
关键词:  价态  点空位  光学性质  ZnO    
Abstract: At present,it is challenging to accurately measure the influence of the controlling of the point vacancy on the physical properties of system ZnO∶Mn in the experiment, and first principles have some advantages to solve this problem. Therefore,the effects of Mn2+/3+/4+ dopant and oxygen vacancy or zinc vacancy (VO/VZn) on the structural stability, electronic structure and optical properties of ZnO were studied by first principles in this paper. The results show that all the systems have a lower formation energy in oxygen rich condition than that in zinc rich condition,indicating the structure is more stable in the condition of rich oxygen . For the Mn2+ doped ZnO containing VO/VZn, the lower the valence state of VO, the lower the formation energy and the more stable the structure; while it was opposite for VZn. In Mn2+/3+/4+ doped ZnO containing natural vacancy(VO0/VZn0), as the valence of Mn increases, the formation energy decreases and the structure becomes more stable. The optical band gap of the Mn2+ doped ZnO containing VO0/VZn0 is narrowed, and the visible light absorption spectrum is red-shifted. Among them, the VO0 impurity level and the Fermi level partially overlap, and form the trap effect, which is more conducive to the generation of electron-hole pairs. In addition, Mn2+ doped ZnO with VO0 has stronger visible light absorption in the range of 360—509 nm, while Mn2+ doped ZnO containing VZn0 has stronger visible light absorption in the 509—760 nm range. The response of ZnO∶Mn system to visible light is mainly caused by the sp-d interaction between Mn, Zn and O ions and the spin polarization of the system caused by Mn doping and VO0/VZn0. Therefore, the ZnO∶Mn system containing VO0/VZn0 is a promising photocatalytic material.
Key words:  valence state    point vacancy    optical property    ZnO
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  O469  
基金资助: 国家自然科学基金(61664007;61964013;11272142);内蒙古自然科学基金(2016MS0108);内蒙古自治区高等学校科学研究项目 (NJZY22376)
通讯作者:  qingyu1119@126.com;gyqzlf@163.com20110265-1   
作者简介:  关玉琴,内蒙古工业大学材料科学与工程学院副教授、硕士研究生导师。2004年7月毕业于内蒙古大学凝聚态物理专业。主要研究方向为功能材料的磁光性能研究。在国内外公开发表20余篇学术论文,其中10余篇被EI或SCI收录。侯清玉,内蒙古工业大学理学院物理系教授、博士研究生导师。2008年7月博士毕业于北京航空航天大学信息功能材料专业。主要研究方向是信息功能材料。发表SCI学术论文120余篇,其中,2区以上论文10余篇。近三年,获得内蒙古自然科学奖二等奖和三等奖各一项。
引用本文:    
关玉琴, 侯清玉, 谷玉兰. 不同价态的Mn和点空位对ZnO体系光学性能的影响[J]. 材料导报, 2022, 36(2): 20110265-7.
GUAN Yuqin,HOU Qingyu, GU Yulan. Effect of Mn and Point Vacancies with Different Valence States on the Optical Properties of ZnO System. Materials Reports, 2022, 36(2): 20110265-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110265  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20110265
1 Fan X F, Zhu Z, Ong Y S, et al. Applied Physics Letters,2007, 91 (12), 121121.
2 Özgür Ü, Alivov Y I, Liu C, et al. Journal of Applied Physics,2005, 98 (4), 041301.
3 Pirhashemi M, Habibi Y A, Rahim P S. Journal of Industrial and Engineering Chemistry,2018, 62, 1.
4 Nava Núñez M Y, Martínez De La Cruz A. Materials Science in Semiconductor Processing,2018, 81, 94.
5 Zhang M, Zhang H, Li L, et al. Journal of Alloys and Compounds,2018, 744, 364.
6 Simanjuntak F M, Panda D, Wei K H, et al. Nanoscale Research Letters, 2016, 11, 368.
7 Sharma P, Mukherjee S. Encyclopedia of Smart Materials,2018, 5, 541.
8 Simanjuntak F M, Prasad O K, Panda D, et al. Applied Physics Letters, 2016, 108(18), 183506.
9 Guo J J, Dong J Y, Kang X, et al. Acta Physica Sinica, 2018, 67(6),063101 (in Chinese).
郭家俊,董静雨,康鑫,等.物理学报,2018,67(6), 063101.
10 Sun Wenxiang, Zhang Kailiang, Wang Fang, et al. ECS Electrochem Lett, 2018, 51(1), 1009.
11 Chey C O, Liu X, Alnoor H, et al. Physica Status Solidi-Rapid Research Letters, 2015, 9(1), 87.
12 Azhar E A, Ye W, Helfrecht B, et al. IEEE Transactions On Electron Devices, 2018, 65(8), 3291.
13 Wu X, Xu Z, Yu Z, et al. Journal of Physics D: Applied Physics, 2015, 48(11), 115101.
14 Tirumalareddygari S R, Guddeti P R, Ramakrishna R K T. Applied Surface Science, 2018, 458, 333.
15 Li X, Zhu X, Jin K, et al. Optical Materials, 2020, 100, 1.
16 Rosa A L, Tacca L L, Frauenheim T, et al. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 6.
17 Putri N A, Fauzia V, Iwan S, et al. Applied Surface Science, 2018, 439, 285.
18 Omri K, El Ghoul J, Lemine O M, et al. Superlattices Microstruct, 2013, 60, 139.
19 Kasim M F, Darman A K A B, Yaakob M K, et al. Physical Chemistry Chemical Physics, 2019, 21(35), 19126.
20 Othman A A, Osman M A, Ibrahim E M M, et al. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 219, 1.
21 Hu D, Liu X, Deng S, et al. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 61, 14.
22 Cao Q, Fu M, Liu G, et al. Journal of Applied Physics, 2014, 115 (24), 243906.
23 Wu Z. Rare Metals, 2017, 36 (9), 711.
24 Gao Q, Dai Y, Li C, et al. Journal of Alloys and Compounds, 2016, 684, 669.
25 Ponnusamy R, Selvaraj S C, Ramachandran M, et al. Crystal Growth & Design, 2016, 16 (7), 3656.
26 Search H, Journals C, Contact A, et al. Journal of Physics: Condensed Matter, 2002, 14, 2717.
27 Wu Z, Cohen R E. Physical Review B-Condensed Matter and Materials Physic, 2006, 73 (23), 2.
28 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77 (18), 3865.
29 Ma X, Wu Y, Lv Y, et al. The Journal of Physical Chemistry C, 2013, 117(49), 26029.
30 Chien C H, Chiou S H, Guo G Y, et al. Journal of Magnetism and Magnetic Materials, 2004, 282 (1-3), 275.
31 Liu Z, Yuan X, Yang P. Journal of Magnetism and Magnetic Materials, 2018, 461, 1.
32 Hsu H S, Huang J C A, Huang Y H, et al. Applied Physics Letters, 2006, 88 (24), 242507.
33 Khalid M, Ziese M, Setzer A, et al. Physical Review B, 2009, 80 (3), 035331.
34 Idrees M, Manan A, Ullah M, et al. Materials Science in Semiconductor Processing, 2018, 87, 202.
35 Lin Q L, Li G P, Xu N N, et al. Journal of Chemical Physics, 2019, 150(9), 094704.
36 Das J, Mishra D K, Srinivasu V V, et al. Indian Journal of Physics, 2015, 89 (11), 1143.
37 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751.
38 Janotti A, Van de Walle C G. Physical Review B, 2007, 76(16), 165202.
39 Janotti A, Van De Walle C G. Applied Physics Letters, 2005, 87(12), 1.
40 Lyons J L, Varley J B, Steiauf D, et al. Journal of Applied Physics, 2017, 122(3), 035704.
41 Kohan A, Ceder G, Morgan D, et al. Physical Review B-Condensed Matter and Materials Physics, 2000, 61(22), 15019.
42 Li T, He C, Zhang W. Journal of Materials Chemistry A, 2019, 7(8), 4134.
43 Li T, He C, Zhang W. Energy Storage Materials, 2020, 25, 866.
44 Shinde V R, Gujar T P, Lokhande C D, et al. Materials Chemistry and Physics, 2006, 96(2-3), 326.
45 Hou Q Y, Guo S Q, Zhao C W. Acta Physica Sinica, 2014, 63(14), 1.
46 Sharma D, Jha R. Journal of Alloys and Compounds, 2017, 698, 532.
47 Koidl P. Physical Review B, 1977, 15 (5), 2493.
48 He C, Zhang J H, Zhang W X, et al. Journal of Physical Chemistry Letters, 2019, 10 (11), 3122.
49 Li Y, Zhao X, Fan W. Journal of Physical Chemistry C, 2011, 115 (9), 3552.
50 Lin Z D, Dai Y H, Li K X. University Chemistry, 2016, 31(6), 72 (in Chinese) .
林则东,戴玉华,李可心.大学化学,2016, 31(6), 72.
[1] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[2] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[3] 沈潇, 魏钦华, 张伟杰, 唐高, 陈振华, 秦来顺, 史宏声. 蓝宝石表面原位玻璃化处理及性能研究[J]. 材料导报, 2021, 35(22): 22022-22026.
[4] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[5] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[6] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[7] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[8] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[9] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[10] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[11] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[12] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[13] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[14] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed