Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14040-14044    https://doi.org/10.11896/cldb.20050132
  无机非金属及其复合材料 |
单层WxMo1-xS2合金电子和光学性质的第一性原理研究
刘俊男1,2, 宋述鹏1,2,*, 胡冬冬1, 周和荣1, 吴润1
1 武汉科技大学材料与冶金学院,武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Electronic and Optical Properties of Monolayer WxMo1-xS2 Alloys: a First-principles Study
LIU Junnan1,2, SONG Shupeng1,2,*, HU Dongdong1, ZHOU Herong1, WU Run1
1 School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 5251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论(DFT)的第一性原理方法对WxMo1-xS2(x=0,0.25,0.5,0.75,1)单层合金的电子结构和光学性质进行了较为系统的研究。计算结果表明:合金的带隙都为直接带隙,随着W含量增加可由1.802 eV增加至1.940 eV,但并不是线性增加。电荷差分密度图计算结果显示,随着W含量的增加,Mo原子失电子数逐渐增加,W原子得电子数逐渐增加。合金的光学性质可随着W含量的变化调谐。随着W含量的增加,WxMo1-xS2合金的静态介电常数逐渐减小,虚部吸收阈值逐渐增大,吸收边向高能区移动。与本征Mo16S32相比,WxMo1-xS2合金在紫外光区域(6~8.5 eV)表现出更强的紫外吸收能力,而W12Mo4S32和W16S32合金在可见光区域(~3 eV)有着更高的吸收系数,这在理论上表明此类单层合金在可见光及近紫外光区域可应用于光电信号的探测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘俊男
宋述鹏
胡冬冬
周和荣
吴润
关键词:  第一性原理  WxMo1-xS2  电子结构  光学性质    
Abstract: First-principles calculations are employed on the electronic and optical properties of WxMo1-xS2(x=0,0.25,0.5,0.75,1) monolayer alloys under the direction of density functional theory calculations. The calculated results indicate that the band gaps of the alloys, which will be increased nonlinearly from 1.802 eV to 1.940 eV with the increase of W content, are all direct band gaps. It is shown in the calculated results of charge differential density that both the number of electrons lost by Mo atom and that of electrons gained by W atom increase gradually as W content climbs. The optical properties of the alloys can be tuned with the change of W content.With the increase of W content, the static dielectric constant gradually decreases, the absorption threshold of the imaginary part gradually increases, and the absorption edge moves to the high energy range. Compared with original Mo16S32, WxMo1-xS2 alloys have stronger absorption ability in the ultraviolet range (6—8.5 eV), while W12Mo4S32 and W16S32 alloys have higher absorption coefficient in the visible range (~3 eV), indicating in theory that the sort of the monolayer alloys can be applied to the detection of photoelectric signals in visible light and near ultraviolet range.
Key words:  first-principle    WxMo1-xS2    electronic structure    optical property
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  O469  
基金资助: 国家自然科学基金(50901053;51771139)
通讯作者:  * spsong@wust.edu.cn   
作者简介:  刘俊男,现为武汉科技大学材料与冶金学院硕士研究生。主要从事二维材料的第一性原理计算的研究。
宋述鹏,武汉科技大学副教授。2002年9月至2008年6月,在武汉大学获得凝聚态物理专业博士学位,毕业后在武汉科技大学任教,2018年12月至2019年12月,在纽约州立大学布法罗分校作访问学者。以第一作者在国内外学术期刊上发表论文40余篇,申请国家发明专利12项,其中授权5项。担任多个学术期刊的审稿人,研究工作主要有金属材料的制备与表征、二维材料的第一性原理计算、开展关于先进金属材料的基础理论和应用研究,主持和参与包括国家自然科学基金面上项目、国家自然科学基金青年项目多项。
引用本文:    
刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
LIU Junnan, SONG Shupeng, HU Dongdong, ZHOU Herong, WU Run. Electronic and Optical Properties of Monolayer WxMo1-xS2 Alloys: a First-principles Study. Materials Reports, 2021, 35(14): 14040-14044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050132  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14040
1 Wu W, Zhang Q, Zhou X, et al. Nano Energy, 2018, 51, 45.
2 Komsa H P, Kotakoski J, Kurasch S, et al. Physical Review Letters, 2012, 109(3), 035503.
3 Lee J, Pak S, Lee Y W, et al. ACS Nano, 2019, 13(11), 13047.
4 Chen Y, Xi J, Dumcenco D O, et al. ACS Nano, 2013, 7(5), 4610.
5 Liu X, Wu J, Yu W, et al. Advanced Functional Materials, 2017, 27(13), 1606469.
6 Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics:Condensed Matter, 2002, 14(11), 2717.
7 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
8 Perdew J P, Chevary J A, Vosko S H, et al. Physical Review B, 1992, 46(11), 6671.
9 Monkhorst H J, Pack J D. Physical Review B, 1976, 13(12), 5188.
10 Kumar A, Ahluwalia P K. Materials Chemistry and Physics, 2012, 135(2-3), 755.
11 Huang Y, Chen X, Zhou D, et al. The Journal of Physical Chemistry C, 2016, 120(10), 5839.
12 Wilson J A, Yoffe A D. Advances in Physics, 1969, 18(73), 193.
13 Lin L, Huang J, Yu W, et al. Solid State Communications, 2019, 301, 113702.
14 Mak K F, Lee C, Hone J, et al. Physical Review Letters, 2010, 105(13), 136805.
15 Ataca C, Sahin H, Ciraci S. The Journal of Physical Chemistry C, 2012, 116(16), 8983.
16 Song J G, Ryu G H, Lee S J, et al. Nature Communications, 2015, 6(1), 1.
17 Penn D R. Physical Review, 1962, 128(5), 2093.
18 Liu H, Antwi K K A, Chua S, et al. Nanoscale, 2014, 6(1), 624.
19 Puschnig P, Ambrosch-Draxl C. Physical Review B, 2002, 66(16), 165105.
20 Kumar A, Ahluwalia P K. Materials Chemistry and Physics, 2012, 135(2-3), 755.
21 Shang J, Chen P, Zhang L, et al. Chemical Physics Letters, 2016, 651, 257.
22 Beal A R, Hughes H P. Journal of Physics C: Solid State Physics, 1979, 12(5), 881.
23 Li Y, Chernikov A, Zhang X, et al. Physical Review B, 2014, 90(20), 205422.
24 Rasmussen F A, Thygesen K S. The Journal of Physical Chemistry C, 2015, 119(23), 13169.
[1] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[2] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[3] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[4] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[5] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[6] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[7] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[8] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[9] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[10] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[11] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[12] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[13] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[14] 李飞, 林成. 余氏理论的内涵及发展展望[J]. 材料导报, 2020, 34(13): 13109-13113.
[15] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed