Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13109-13113    https://doi.org/10.11896/cldb.19080202
  无机非金属及其复合材料 |
余氏理论的内涵及发展展望
李飞, 林成
辽宁石油化工大学机械工程学院,抚顺 113001
The Connotation and Development Prospect of Yu Rui-huang Theory
LI Fei, LIN Cheng
School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
下载:  全 文 ( PDF ) ( 2212KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自从1978年吉林大学的余瑞璜院士建立“固体与分子经验电子理论”(简称余氏理论)以来,余氏理论已被广泛应用于材料科学研究中。余氏理论作为目前唯一由我国学者建立的比较完善的电子理论,它的快速健康发展对提升我国材料电子理论在国际上的地位与水平具有重要的意义。
余氏理论的基本思想来源于量子力学、能带理论、电子浓度理论及价键理论。该理论建立了固体与分子中原子状态的描述方法,给出了固体与分子中原子状态的表征方法,建立了多粒子体系的原子间相互作用方程与求解方法。然而,余氏理论的一些“经验因素”制约着其发展与进步。经过40余年的发展,这些“经验因素”已经越来越少,但研究者们还未关注到余氏理论的持续研究进展。
目前,余氏理论已不断地完善与发展,其中自洽键距差法和界面电子结构的计算极大地丰富了余氏理论的内涵。余氏理论的研究范围也比较广泛,几乎包含了所有合金体系。基于余氏理论的合金成分设计方法研究,使余氏理论的研究更具有实用性。迄今为止,余氏理论的发展正经历三个阶段,即理论初始的建立期、20世纪90年代的理论广泛应用期以及当今的理论发展缓慢期。
为了进一步推动余氏理论的发展与进步,本文从余氏理论的理论基础出发,详细地论述了余氏理论的主要内容与思想精髓,深入分析了余氏理论的不足与解决思路,归纳总结了余氏理论的最新研究成果,展望了余氏理论的发展趋势。本文的研究报道不仅为余氏理论的研究者提供可借鉴的研究思路,也有利于余氏理论的不断进步与发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
林成
关键词:  余氏理论  电子结构  杂化  键距差    
Abstract: Since the empirical electron theory of solids and molecules (known as Yu Rui-huang theory) was established by Yu Rui-huan academician of Jilin university in 1978, Yu Rui-huang theory has been widely used in material science research. As the only electronic theory established by Chinese scholars, the rapid and healthy development of Yu Rui-huang theory is of great significance to improve the status and level of China’s material electronics theory in the world.
The basic ideas of Yu Rui-huang theory come from quantum mechanics, energy band theory, electron concentration theory and valence bond theory. In this theory, the description method of atomic states in solids and molecules is established, the characterization of atomic states in solids and molecules is also given, and the interaction equation and solution method of multi-particle system are established. However, Yu Rui-huang theory still has some “empirical factors” restricting its development and progress. After more than 40 years of development, these “empirical factors” are becoming less and less, but so far most researchers still have not fully paid attention to the continuous research progress of Yu Rui-huang theory.
At present, Yu Rui-huang theory has been constantly improved and developed, among which the self-consistent bond length difference method and the calculation of interface electronic structure have greatly enriched the connotation of Yu Rui-huang theory. Yu Rui-huang theory covers a wide range of researches, including almost all alloy systems. The alloy composition design method based on Yu Rui-huang theory makes the Yu Rui-huang theory more practical. So far, the development of Yu Rui-huang theory has gone through three stages, i.e., the initial establishment, the widespread application in the 1990s and the slow development today.
In order to promote the development of Yu Rui-huang theory, this paper describes the connotation of Yu Rui-huang theory in view of its theoretical basis, and the deficiencies and their solutions are analyzed in depth, meanwhile the latest research results and the development trend of Yu Rui-huang theory are summarized. The research report of this paper not only provides research ideas for the researchers engaged in Yu Rui-huang theory, but also contributes to the continuous progress of Yu Rui-huang theory.
Key words:  Yu Rui-huang theory    electron structure    hybridization    bond length difference
                    发布日期:  2020-06-24
ZTFLH:  TG111.1  
基金资助: 辽宁省教育厅科学研究经费项目(L2019023);辽宁省博士科研启动基金指导项目(20170520008);辽宁石油化工大学引进人才科研启动基金(2019XJJ-004;2017XJJ-018)
通讯作者:  cheng_lin1979@163.com   
作者简介:  李飞,辽宁石油化工大学机械工程学院副教授,硕士生导师,博士。目前主要研究领域为余氏理论及其应用。近年来,发表学术论文20余篇,主编教材1部,获山东省煤炭科学技术二等奖1项。
林成,辽宁石油化工大学机械工程学院教授,硕士生导师,博士。主要从事余氏理论及其应用研究。近年来,发表学术论文30余篇,出版专著1部,授权国家发明专利3项。曾获省级科技一等奖1项。
引用本文:    
李飞, 林成. 余氏理论的内涵及发展展望[J]. 材料导报, 2020, 34(13): 13109-13113.
LI Fei, LIN Cheng. The Connotation and Development Prospect of Yu Rui-huang Theory. Materials Reports, 2020, 34(13): 13109-13113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080202  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13109
1 Yu R H. Chinese Science Bulletin, 1978, 23(4), 217(in Chinese).
余瑞璜. 科学通报, 1978, 23(4), 217.
2 Zhang R L. Empirical electron theory of solids and molecules, Jilin Science and Technology Press, China, 1993(in Chinese).
张瑞林. 固体与分子经验电子理论, 吉林科学技术出版社, 1993.
3 Yan J, Liu N, Chen T B. Heat Treatment, 2016, 31(5), 22(in Chinese).
严骏, 刘宁, 陈天宝. 热处理, 2016, 31(5), 22.
4 Li F, Qian S L, Zhu Q F, et al. Chinese Journal of Rare Metals, 2015, 39(11), 1043(in Chinese).
李飞, 钱守龙, 朱庆丰, 等. 稀有金属, 2015, 39(11), 1043.
5 Liu W D, Qu H. Special Casting & Nonferrous Alloys, 2015, 35(2), 123(in Chinese).
刘伟东, 屈华. 特种铸造及有色合金, 2015, 35(2), 123.
6 Wei W Z, Gao Y, Zhang W, et al. Materials Reports B: Research Papers, 2014, 28(10), 130(in Chinese).
韦文竹, 高原, 张维, 等. 材料导报:研究篇, 2014, 28(10), 130.
7 Jiang S Y, Xu H M, Sun Y X, et al. Journal of Alloys and Compounds, 2019, 779, 427.
8 Yin G L, Chen S Y, Liang J, et al. Metallurgical and Materials Transactions A, 2019, 50(6), 2599.
9 Wang H J, Liu H Y, Lu J D, et al. Chinese Journal of Computational Physics, 2016, 33(4), 467(in Chinese).
王红军, 刘红玉, 卢建夺, 等. 计算物理, 2016, 33(4), 467.
10 Zhang L, Li S C. Materials Reports B: Research Papers, 2011, 25(5), 126(in Chinese).
张磊, 李世春. 材料导报:研究篇, 2011, 25(5), 126.
11 Luo X G, Li J P, Hu P, et al. Science China (Technological Sciences), 2010, 53(7), 1877.
12 Zhao W D, Xu J, Zhang S M, et al. Journal of Synthetic Crystals, 2010, 39(4), 888(in Chinese).
赵文东, 徐骏, 张少明, 等. 人工晶体学报, 2010, 39(4), 888.
13 Xu B, Lv M Z, Tian B, et al. Journal of Synthetic Crystals, 2013, 42(12), 2509(in Chinese).
许斌, 吕美哲, 田彬, 等. 人工晶体学报, 2013, 42(12), 2509.
14 Lin C, Yin G L, Zhang A M, et al. Scripta Materialia, 2016, 117, 28.
15 Lin C, Huang S X, Yin G L, et al. Computational Materials Science, 2016, 123, 263.
16 Lin C, Yin G L, Zhao Y Q, et al. Computational Materials Science, 2016, 111, 41.
17 Lin C, Liu Z L. Science in China Series E: Technological Sciences, 2008, 51(11), 1867.
18 Lin C, Liu Z L, Zhao Y Q. Metallurgical and Materials Transactions A, 2009, 40A(5), 1049.
19 Lin C, Yin G L, Zhao Y Q, et al. Materials Chemistry and Physics, 2011, 125(3), 411.
20 Lv M Z, Xu B, Cai L C, et al. Chinese Physics Letters, 2019, 36(1), 013101.
21 Li W, Zhang J M, Guan Z Z, et al. Journal of Applied Sciences, 1996, 14(4), 391(in Chinese).
李文, 张建民, 关振中, 等. 应用科学学报, 1996, 14(4), 391.
22 Li W, Guan Z Z, Du L M, et al. Journal of Aeronautical Materials, 1997, 17(2), 56(in Chinese).
李文, 关振中, 杜立明, 等. 航空材料学报, 1997, 17(2), 56.
23 Li F, Zhu Q F, Li L, et al. Rare Metal Materials and Engineering, 2015, 44(8), 2029(in Chinese).
李飞, 朱庆丰, 李磊, 等. 稀有金属材料与工程, 2015, 44(8), 2029.
24 Ye Y C, Li P J, He L J. Intermetallics, 2010, 18(2), 292.
25 Li F, Liao Y J, Wang X, et al. Materials Reports B: Research Papers, 2018, 32(9), 3190(in Chinese).
李飞, 廖怡君, 王旭, 等. 材料导报:研究篇, 2018, 32(9), 3190.
26 Zhang A M, Zhao Z W, Yin G L, et al. Computational Materials Science, 2017, 140, 61.
27 Liu Z L, Li Z L, Liu W D. Interface electron structure and interface pro-perty, Science press, China, 2002(in Chinese).
刘志林, 李志林, 刘伟东. 界面电子结构与界面性能, 科学出版社, 2002.
28 Jiang S Y, Li S C. Transactions of Materials and Heat Treatment, 2014, 35(8), 213(in Chinese).
蒋淑英, 李世春. 材料热处理学报, 2014, 35(8), 213.
29 Li Y J, Chen Y C, Zhang X F, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(5), 1282(in Chinese).
李彦菊, 陈永翀, 张喜凤, 等. 中国有色金属学报, 2013, 23(5), 1282.
30 Zhang J B, Yang C, Zhang C S, et al. Corrosion & Protection, 2018, 39(3), 207(in Chinese).
章敬保, 杨川, 张程菘, 等. 腐蚀与防护, 2018, 39(3), 207.
31 Li C F, Tong L H, Cheng D C, et al. Iron and Steel, 2015, 50(1), 1(in Chinese).
李春福, 童丽华, 程定春, 等. 钢铁, 2015, 50(1), 1.
32 Liu W D, Zhang X, Qu H. Materials Reports B: Research Papers, 2018, 32(4), 672(in Chinese).
刘伟东, 张旭, 屈华. 材料导报:研究篇, 2018, 32(4), 672.
33 Liu H P, Liu W D, Qu H, et al. Rare Metal Materials and Engineering, 2015, 44(5), 1139(in Chinese).
刘海平, 刘伟东, 屈华, 等. 稀有金属材料与工程, 2015, 44(5), 1139.
34 Yin G L, Zhou L D, Lin C. Ordnance Material Science and Engineering, 2014, 37(5), 5(in Chinese).
尹桂丽, 周立岱, 林成. 兵器材料科学与工程, 2014, 37(5), 5.
35 Jing Y J, Li X H, Hou J B, et al. Transactions of the China Welding Institution, 2014, 35(12), 101(in Chinese).
静永娟, 李晓红, 侯金保, 等. 焊接学报, 2014, 35(12), 101.
36 Hou Y H, Li G Q, Liu Z Y, et al. Rare Metal Materials and Enginee-ring, 2011, 40(3), 407(in Chinese).
侯延辉, 李光强, 刘志义, 等. 稀有金属材料与工程, 2011, 40(3), 407.
37 Jiang S Y, Li S C. Materials Science & Technology, 2014, 22(4), 124(in Chinese).
蒋淑英, 李世春. 材料科学与工艺, 2014, 22(4), 124.
38 Wang X L, Peng Y. Materials Science & Technology, 2015, 23(4), 30(in Chinese).
王兴隆, 彭艳. 材料科学与工艺, 2015, 23(4), 30.
39 Zhang L, Li S C. Rare Metals, 2015, 34(4), 259.
40 Liu W S, Feng P Z, Wang X H, et al. Materials Chemistry and Physics, 2012, 132(2-3), 515.
41 Peng K, Yi M Z, Ran L P, et al. Materials Chemistry and Physics, 2011, 129(3), 990.
42 Lin C, Yin G L, Liu Z L, et al. Rare Metal Materials and Engineering, 2010, 39(7), 1189(in Chinese).
林成, 尹桂丽, 刘志林, 等. 稀有金属材料与工程, 2010, 39(7), 1189.
43 Liu Z L, Lin C. Statistical values of electron structure parameters of alloys and calculation of mechanical properties of alloys, Metallurgical Industry press, China, 2008(in Chinese).
刘志林, 林成. 合金电子结构参数统计值及合金力学性能计算, 冶金工业出版社, 2008.
44 Liu Z L, Lin C, Guo Y C. Progress in Natural Science, 2006, 16(8), 859.
45 Liu Z L, Lin C, Liu Y, et al. Progress in Natural Science, 2005, 15(9), 832.
46 Li F, Zhao X, Li Z W. Journal of Liaoning Shihua University, 2010, 30(1), 23(in Chinese).
李飞, 赵侠, 李志武. 辽宁石油化工大学学报, 2010, 30(1), 23.
47 Meng Z H, Li J B, Guo Y Q, et al. Acta Physica Sinica, 2012, 61(10), 107101(in Chinese).
孟振华, 李俊斌, 郭永权, 等. 物理学报, 2012, 61(10), 107101.
48 Wu W X, Hong X, Guo Z H, et al. Journal of Iron and Steel Research, 2009, 21(5), 42(in Chinese).
吴文霞, 洪兴, 郭朝晖, 等. 钢铁研究学报, 2009, 21(5), 42.
49 Shi M, Fang H J, Xu Y D, et al. Metallic Functional Materials, 2009, 16(6), 30(in Chinese).
石敏, 房虹娇, 许育东, 等. 金属功能材料, 2009, 16(6), 30.
50 Shi M, Xu Y D, Liu N, et al. Bulletin of the Chinese Ceramic Society, 2005, 24(6), 32(in Chinese).
石敏, 许育东, 刘宁, 等. 硅酸盐通报, 2005, 24(6), 32.
51 Wang T, Guo Y Q, Li S. Chinese Physics B, 2017, 26(10), 103101.
52 Meng Z H, Guo Y Q. Chinese Science Bulletin, 2012, 57(28-29), 2693(in Chinese).
孟振华, 郭永权. 科学通报, 2012, 57(28-29), 2693.
53 Xue Z Q, Guo Y Q. Chinese Physics B, 2016, 25(6), 063101.
54 Guo Y Q, Yu R H, Zhang R L, et al. Journal of Physical Chemistry B, 1998, 102(1), 9.
55 Fu B Q, Li Z L, Liu W. International Journal of Minerals, Metallurgy and Materials, 2011, 18(6), 676.
56 Fu B Q, Liu W, Li Z L. Applied Surface Science, 2010, 256(22), 6899.
57 Li Z L, Xu H B, Gong S K. Journal of Physical Chemistry B, 2004, 108(39), 15165.
58 Lin C, Yin G L, Zhao Y Q. Computational Materials Science, 2015, 101, 168.
59 Cheng K J, Cheng S Y. Progress in Natural Science, 1993, 3(5), 417(in Chinese).
程开甲, 程漱玉. 自然科学进展, 1993, 3(5), 417.
60 Cheng K J, Cheng S Y. Materials Science & Engineering, 1998, 16(1), 1(in Chinese).
程开甲, 程漱玉. 材料科学与工程, 1998, 16(1), 1.
61 Lin C, Zhao Y Q, Yin G L. Computational Materials Science, 2015, 97, 86.
[1] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[2] 卢颖,陈威林,高双,李润伟. 柔性阻变存储材料与器件研究进展[J]. 材料导报, 2020, 34(1): 1146-1154.
[3] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[4] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[5] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[6] 方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
[7] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[8] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[9] 段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春. 金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展[J]. 材料导报, 2019, 33(19): 3313-3321.
[10] 李亚敏, 江璐, 赵旺, 陈银萍. 铜掺杂对γ'相影响的第一性原理研究[J]. 材料导报, 2019, 33(18): 3085-3088.
[11] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[12] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[13] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[14] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[15] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed