Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10017-10022    https://doi.org/10.11896/cldb.19080074
  无机非金属及其复合材料 |
羟基修饰单层砷烯及锑烯的电子结构与光学性质
方文玉1,2, 张鹏程1, 赵军1
1 湖北医药学院公共卫生与管理学院,十堰 442000
2 湖北大学材料科学与工程学院,武汉 430062
The Electronic Structure and Optical Properties of Hydroxylated Arsenene/Antimonene
FANG Wenyu1,2, ZHANG Pengcheng1, ZHAO Jun1
1 Public Health and Management School, Hubei University of Medicine, Shiyan 442000, China
2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
下载:  全 文 ( PDF ) ( 4339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算了单层砷烯和锑烯,以及羟基(-OH)表面修饰砷烯和锑烯的晶体结构、稳定性、电子结构和光学性质。计算结果表明:经过修饰后,砷烯及锑烯的晶格常数、键角、键长均变大,褶皱厚度变小,且均具有较好的稳定性。电子结构分析表明,羟基修饰后的砷烯及锑烯转变为狄拉克材料,拥有超高载流子迁移率,且能带结构具有较好的线性色散。光学性质显示,修饰后的砷烯及锑烯的吸收光谱明显红移, 对太阳光谱的吸收效果明显增强, 表明其在未来光电子设备等领域中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方文玉
张鹏程
赵军
关键词:  砷烯  锑烯  电子结构  狄拉克材料  光学性质    
Abstract: Using the first principle calculation based on the density functional theory, we have systematically investigated the structure stability and electronic properties of arsenene, antimonene, As-OH and Sb-OH. The results show that the lattice constant, bond angle and bond length of arsenene and antimonene become larger after being chemically decorated, the buckling height becomes smaller, and both have better stability. The electronic structure analysis shows that the As-OH and Sb-OH are converted into Dirac materials, which have high carrier mobility and band structure with good linear dispersion. The optical properties show that the absorption spectra of the As-OH and Sb-OH are obviously red-shifted, and the absorption effect on the solar spectrum is obviously enhanced, indicating that it has good application prospects in the field of optoelectro-nic equipment in the future.
Key words:  arsenene    antimonene    electronic structure    Dirac materials    optical properties
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  O641  
基金资助: 湖北医药学院人才启动金项目(2018QDJZR22)
通讯作者:  stzhao@163.com   
作者简介:  方文玉,湖北医药学院讲师,2013年毕业于武汉理工大学凝聚态物理专业,以第一作者身份在国内外学术期刊上发表论文10篇,研究工作主要围绕太阳能选择性吸收涂层设计,新型二维材料的电子结构,光学性质和热电性质。主持厅局级项目1项、校级项目1项,参与湖北省教育厅项目1项。
赵军,博士,湖北医药学院副教授。主要研究兴趣为计算物理、数据科学。近五年发表SCI论文7篇,主持厅局级项目和校级项目各1项,参与国家级项目2项。
引用本文:    
方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
FANG Wenyu, ZHANG Pengcheng, ZHAO Jun. The Electronic Structure and Optical Properties of Hydroxylated Arsenene/Antimonene. Materials Reports, 2021, 35(10): 10017-10022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080074  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10017
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Li X Y, Lin B N, Li H B, et al.Applied Catalysis B-Environmental, 2018, 239(1), 254.
3 Krasian T, Punyodom W, Worajittiphon P, et al. Chemical Engineering Journal, 2019, 369(1), 563.
4 Zhou Y G, Lin X D.Applied Surface Science, 2018, 458(1), 572.
5 Chandiramouli R.Chemical Physics Letters, 2018, 708(1), 130.
6 Kripalani D R, Kistanov A A, Cai Y Q,et al. Physical Review B, 2018, 98(8), 085410.
7 Jia L, Lei T M.Materials Review A: Review Papers, 2018, 32(4), 1100 (in Chinese).
贾蕾, 雷天民. 材料导报:综述篇, 2018, 32(4), 1100.
8 Dai S H, Zhou W, Liu Y Y,et al. Applied Surface Science, 2018, 448(1), 281.
9 Zhang S L, Yan Z, Li Y F, et al. Angewandte Chemie-international Edition, 2015, 54(10), 3112.
10 Kecik D, Durgun E, Ciraci S.Physical Review B, 2016, 94(20), 205410.
11 Abergel D S L, Edge J M, Balatsky A V.New Journal of Physics, 2013,16, 065012.
12 Chen J Y, Ge Y F, Zhou W Z, et al. Journal of Physics-condensed Matter, 2018, 30(24), 245701.
13 Zhao M W, Zhang X M, Li L Y.Scientific Reports, 2015, 5, 16108/1.
14 Wang X X, Bian G, Xu C Z, et al. Nanotechnology, 2017, 28(39), 395706.
15 Xie M Q, Zhang S L, Cai B, et al. Nano Energy, 2017, 38(1), 561.
16 Tang W C, Sun M L, Ren Q Q,et al. Applied Surface Science, 2016, 376(1), 286.
17 Zhang S L, Hu Y H, Hu Z Y,et al. Applied Physics Letters, 2015, 107(1), 022102.
18 Yuan J H, Xie Q X, Yu N N, et al. Applied Surface Science, 2017, 394(1), 625.
19 Saniz R, Sarmadian N, Partoens B,et al. Journal of Physics and Chemistry of Solids, 2019, 132(1), 172.
20 Zhang B F, Zhang H, Lin J H,et al. Physical Chemistry Chemical Phy-sics, 2018, 20(48), 30257.
21 Carrete J, Gallego L J, Mingo N. Journal of Physical Chemistry Letters, 2017, 8(7), 1375.
22 Zhao X W, Qiu B, Hu G C,et al. Applied Surface Science, 2019, 490(1), 172.
23 Fang W Y, Zhang P C, Zhao J, et al.Acta Physica Sinica, 2020, 69(5), 056301 (in Chinese).
方文玉, 张鹏程, 赵军, 等. 物理学报, 2020, 69(5), 056301.
24 Fang W Y, Li P A, Yuan J H, et al.Journal of Electronic Materials, 2020, 49(2), 959.
25 Wang Y P, Ji W X, Zhang C W, et al. Scientific Reports, 2016, 6(1), 20342.
26 Xiao Y, Zhou M, Zeng M, et al. Advanced Materials, 2019, 6(5),1801501.
27 Zhou Y H, Peng Z B. Computational Materials Science, 2019, 168(1), 137.
28 Berdiyorov G R, Madjet M E. Applied Surface Science, 2016, 390(1), 1009.
29 Yuan J H, Gao B, Wang W, et al. Acta Physico-Chimica Sinica, 2015, 31(7), 1302 (in Chinese)
袁俊辉, 高博, 汪文, 等. 物理化学学报, 2015, 31(7), 1302.
[1] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[2] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[3] 杨亚杰, 苏文勇, 衡成林, 王锋. 不同电极构型的砷烯和砷化锑扩展分子的电子输运性质[J]. 材料导报, 2020, 34(18): 18039-18043.
[4] 李飞, 林成. 余氏理论的内涵及发展展望[J]. 材料导报, 2020, 34(13): 13109-13113.
[5] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[6] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[7] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[8] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[9] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[10] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[11] 段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春. 金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展[J]. 材料导报, 2019, 33(19): 3313-3321.
[12] 李亚敏, 江璐, 赵旺, 陈银萍. 铜掺杂对γ'相影响的第一性原理研究[J]. 材料导报, 2019, 33(18): 3085-3088.
[13] 张睿, 顾晓龙, 庞欢. 新型异金属三羰基铼配合物的合成及光学性质研究[J]. 《材料导报》期刊社, 2018, 32(8): 1252-1257.
[14] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[15] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed