Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18039-18043    https://doi.org/10.11896/cldb.19090008
  机非金属及其复合材料 |
不同电极构型的砷烯和砷化锑扩展分子的电子输运性质
杨亚杰, 苏文勇, 衡成林, 王锋
北京理工大学物理学院,北京 100081
Electron Transport Properties of Arsenene and Antimony Arsenide Extended Molecules with Different Electrode Configurations
YANG Yajie, SU Wenyong, HENG Chenglin, WANG Feng
School of Physics, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 4228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过杂化密度泛函理论和弹性散射格林函数方法,计算了不同电极结构的Au-As-Au和Au-AsSb-Au扩展分子的电子输运性质。结果表明,在两种Au-As-Au扩展分子中,类型Ⅰ扩展分子容易导通,并在0.5 V时达到较宽的3.8 nA饱和电流;类型Ⅱ扩展分子在0.4 V之前几乎没有电流,之后缓慢增加并在1.5 V达到与类型Ⅰ相同的饱和电流。这说明不同的电极接触方式改变了砷烯扩展分子的分子轨道性质,但是并未改变它们的最大电流导通能力。在两种Au-AsSb-Au扩展分子中,类型Ⅰ扩展分子容易导通并在0.5 V时达到较宽的1.8 nA饱和电流;类型Ⅱ扩展分子在1.0 V之前电流增加缓慢,之后迅速增加并在1.25 V达到1.0 nA饱和电流。对比发现,类型Ⅰ扩展分子容易导通且具有较宽的电流平台值;类型Ⅱ扩展分子不易导通,之后会达到一个较窄的电流平台值,这使砷类分子器件具备了更丰富的电子输运性质,从而在电路中满足稳恒输出、阈值开关、线性响应的不同要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨亚杰
苏文勇
衡成林
王锋
关键词:  砷烯  砷化锑  电子输运  饱和电流  阈值开关    
Abstract: The electron transport properties of Au-As-Au and Au-AsSb-Au extended molecules with different electrode structures were calculated by hybrid density functional theory and elastic scattering Green function method. The results show that, among two Au-As-Au extended molecules, type I extended molecule is easy to conduct and reaches a wide saturation current of 3.8 nA at 0.5 V; type II extended molecule has almost no current before 0.4 V, then increases slowly and reaches the same saturation current as type I at 1.5 V. This shows that different electrode contact methods change the orbital characteristics of arsenic extended molecules, but don't change their maximum current conducting ability. Among two Au-AsSb-Au extended molecules, type I extended molecule is easy to conduct and reaches a wide saturation current of 1.8 nA at 0.5 V; type II extended molecule increases slowly before 1.0 V, then increases rapidly after 1.25 V and reaches 1.0 nA saturation current. Finally, it is found that type I extended molecule is easy to conduct and has a wide current plateau value, while type II extended molecule is not easy to conduct and has a narrow current plateau value, which make arsenic molecular devices have more electron transport properties, to meet the different requirements of steady current output, threshold switch, linear response.
Key words:  arsenene    antimony arsenide    electron transport    saturation current    threshold switch
                    发布日期:  2020-09-12
ZTFLH:  O469  
基金资助: 国家自然科学基金(61775016;11774030;11374033;51735001)
通讯作者:  suwy@bit.edu.cn   
作者简介:  杨亚杰,于2017年9月至2020年7月就读于北京理工大学,并取得理学硕士学位,主要从事二维材料分子器件的电子输运性质研究。
苏文勇,北京理工大学副教授,硕士研究生导师。2002年毕业于北京理工大学,取得应用化学博士学位。之后,分别于2004—2006年到瑞典皇家理工学院理论化学系、2010年到中央兰开夏大学进行访问、合作研究,并一直保持良好的合作。他曾在国内外学术期刊上发表论文20余篇,并作为主要成员参加了2013年的中国自然科学基金项目(NSFC No.11374033)。他的研究方向为纳米电子器件,利用第一原理研究纳米器件中电子输运性质。
引用本文:    
杨亚杰, 苏文勇, 衡成林, 王锋. 不同电极构型的砷烯和砷化锑扩展分子的电子输运性质[J]. 材料导报, 2020, 34(18): 18039-18043.
YANG Yajie, SU Wenyong, HENG Chenglin, WANG Feng. Electron Transport Properties of Arsenene and Antimony Arsenide Extended Molecules with Different Electrode Configurations. Materials Reports, 2020, 34(18): 18039-18043.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090008  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18039
1 Kara A, Enriquez H, Seitsonen A P, et al. Surface Science Reports, 2012, 67(1), 1.
2 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699.
3 Mak K F, Lee C, Hone J, et al. Physical Review Letters, 2010, 105(13), 136805.
4 Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8(4), 4033.
5 Li L K, Yu Y J, Ye G J, et al. Nature Nanotechnology, 2014, 9, 372.
6 Novoselov K S, Morozov S V, Mohinddin T M G, et al. Physica Status Solidi (b), 2007, 244(11), 4106.
7 Qiao J S, Kong X H, Hu Z X, et al. Nature Communications, 2014, 5(1), 4475.
8 Deng Y, Luo Z, Conrad N J, et al. ACS Nano, 2014, 8(8), 8292.
9 Mayorga-Martinez C C, Sofer Z, Pumera M. Angewandte Chemie, 2016, 54(48), 14317.
10 Yang Y, Gao J, Zhang Z, et al. Advanced Materials, 2016, 28(40), 8787.
11 Island J O, Steele G A, Zant H S J V D, et al. 2D Materials, 2015, 2(1), 011002.
12 Ares P, Palacios J J, et al. Advanced Materials, 2018, 30(2), 1703771.
13 Zhang S L, Yan Z, Li Y, et al. Angewandte Chemie International Edition, 2015, 54, 3112.
14 Zhang S, Xie M, Li F, et al. Angewandte Chemie, 2016, 128(5), 1698.
15 Kamal C, Ezawa M. Physical Review B, 2015, 91(8), 085423.
16 Arsat R, Breedon M, Shafiei M, et al. Chemical Physics Letters, 2009, 467(4-6), 344.
17 Fortin-Deschenes M, Moutanabbir O. The Journal of Physical Chemistry C, 2018, 10, 0121.
18 Shoemaker D P, Chasapis T C, Do D, et al. Physical Review B, 2012, 87, 094201.
19 Kou L, Ma Y, Tan X, et al. The Journal of Physical Chemistry C, 2015, 119(12), 6918.
20 Zhao N, Zhu Y F, Jiang Q. Journal of Materials Chemistry C, 2018, 6, 2854.
21 Zheng G, Jia Y, Gao S, et al. Physical Review B, 2016, 94(15), 155448.
22 Zhang D C, Zhang A X, Guo S D, et al. RSC Advances, 2017, 7, 24537.
23 Zhang S L, Guo S L, Chen Z F, et al. Chemical Society Reviews, 2018, 47, 982.
24 Xu Y F, Peng B, Zhang H, et al. Annalen Der Physik, 2017, 529(4), 1600152.
25 Pumera M, Sofer Z. Advanced Materials, 2017, 29, 1605299.
26 Zhang H, Ma Y, Chen Z. Nanoscale, 2015, 7, 19152.
27 Shu H, Li Y, Niu X, et al. Journal of Materials Chemistry C, 2017, 10, 1039.
28 Liu M Y, Huang Y, Chen Q Y, et al. Scientific Reports, 2016, 6, 29114.
29 Gao R F, Su W Y, Wang F, et al. Chinese Physics Letters, 2017, 34, 027201.
30 Sun D D, Su W Y, Wang F, et al. Chinese Physics Letters, 2018, 32(12), 2105.
31 Su W Y, Jiang J, Lu W, et al. Nano Letters, 2006, 6(6), 2091.
32 Su W Y, Jiang J, Luo Y. Chemical Physics Letters, 2005, 412(4-6), 406.
33 Wang C K, Y Luo. Journal of Chemical Physics, 2003, 119, 4923.
34 Wang C K, Fu Y, Luo Y. Physical Chemistry Chemical Physics, 2001, 3(3), 5017.
35 Mujica V, Kemp M, Ratner M A. Journal of Chemical Physics, 1994, 101(8), 6856.
36 Tian G J, Su W Y. Chinese Physics Letters, 2009, 26, 068501.
37 Zahid F, Ghosh A W, Paulsson M, et al. Physical Review B, 2004, 70(24), 245317.
38 Jiang J, Lu W, Luo Y. Chemical Physics Letters, 2004, 400(4-6), 336.
39 Luo Y, Wang C K, Fu Y. Journal of Chemical Physics, 2002, 117(22), 10283.
40 Frisch M J, et al. Gaussian 09 Revision A.1., Gaussian Inc, Wallingford CT, 2009.
41 Jiang J, Wang C K, Luo Y. QCME-V1.0(Quantum chemistry for molecular electronics), Royal Institute of Technology Press, Sweden, 2005.
42 Liu R J. Journal of Shandong University of Technology (Natural Science Edition), 2019, 33(4), 54(in Chinese).
刘瑞金.山东理工大学学报(自然科学版), 2019, 33(4), 54.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[2] 孙豆豆,苏文勇. 单层黑磷和蓝磷扩展分子结的电子输运特性[J]. 《材料导报》期刊社, 2018, 32(12): 2105-2111.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed