Abstract: The electron transport properties of Au-As-Au and Au-AsSb-Au extended molecules with different electrode structures were calculated by hybrid density functional theory and elastic scattering Green function method. The results show that, among two Au-As-Au extended molecules, type I extended molecule is easy to conduct and reaches a wide saturation current of 3.8 nA at 0.5 V; type II extended molecule has almost no current before 0.4 V, then increases slowly and reaches the same saturation current as type I at 1.5 V. This shows that different electrode contact methods change the orbital characteristics of arsenic extended molecules, but don't change their maximum current conducting ability. Among two Au-AsSb-Au extended molecules, type I extended molecule is easy to conduct and reaches a wide saturation current of 1.8 nA at 0.5 V; type II extended molecule increases slowly before 1.0 V, then increases rapidly after 1.25 V and reaches 1.0 nA saturation current. Finally, it is found that type I extended molecule is easy to conduct and has a wide current plateau value, while type II extended molecule is not easy to conduct and has a narrow current plateau value, which make arsenic molecular devices have more electron transport properties, to meet the different requirements of steady current output, threshold switch, linear response.
杨亚杰, 苏文勇, 衡成林, 王锋. 不同电极构型的砷烯和砷化锑扩展分子的电子输运性质[J]. 材料导报, 2020, 34(18): 18039-18043.
YANG Yajie, SU Wenyong, HENG Chenglin, WANG Feng. Electron Transport Properties of Arsenene and Antimony Arsenide Extended Molecules with Different Electrode Configurations. Materials Reports, 2020, 34(18): 18039-18043.
1 Kara A, Enriquez H, Seitsonen A P, et al. Surface Science Reports, 2012, 67(1), 1. 2 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699. 3 Mak K F, Lee C, Hone J, et al. Physical Review Letters, 2010, 105(13), 136805. 4 Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8(4), 4033. 5 Li L K, Yu Y J, Ye G J, et al. Nature Nanotechnology, 2014, 9, 372. 6 Novoselov K S, Morozov S V, Mohinddin T M G, et al. Physica Status Solidi (b), 2007, 244(11), 4106. 7 Qiao J S, Kong X H, Hu Z X, et al. Nature Communications, 2014, 5(1), 4475. 8 Deng Y, Luo Z, Conrad N J, et al. ACS Nano, 2014, 8(8), 8292. 9 Mayorga-Martinez C C, Sofer Z, Pumera M. Angewandte Chemie, 2016, 54(48), 14317. 10 Yang Y, Gao J, Zhang Z, et al. Advanced Materials, 2016, 28(40), 8787. 11 Island J O, Steele G A, Zant H S J V D, et al. 2D Materials, 2015, 2(1), 011002. 12 Ares P, Palacios J J, et al. Advanced Materials, 2018, 30(2), 1703771. 13 Zhang S L, Yan Z, Li Y, et al. Angewandte Chemie International Edition, 2015, 54, 3112. 14 Zhang S, Xie M, Li F, et al. Angewandte Chemie, 2016, 128(5), 1698. 15 Kamal C, Ezawa M. Physical Review B, 2015, 91(8), 085423. 16 Arsat R, Breedon M, Shafiei M, et al. Chemical Physics Letters, 2009, 467(4-6), 344. 17 Fortin-Deschenes M, Moutanabbir O. The Journal of Physical Chemistry C, 2018, 10, 0121. 18 Shoemaker D P, Chasapis T C, Do D, et al. Physical Review B, 2012, 87, 094201. 19 Kou L, Ma Y, Tan X, et al. The Journal of Physical Chemistry C, 2015, 119(12), 6918. 20 Zhao N, Zhu Y F, Jiang Q. Journal of Materials ChemistryC, 2018, 6, 2854. 21 Zheng G, Jia Y, Gao S, et al. Physical Review B, 2016, 94(15), 155448. 22 Zhang D C, Zhang A X, Guo S D, et al. RSC Advances, 2017, 7, 24537. 23 Zhang S L, Guo S L, Chen Z F, et al. Chemical Society Reviews, 2018, 47, 982. 24 Xu Y F, Peng B, Zhang H, et al. Annalen Der Physik, 2017, 529(4), 1600152. 25 Pumera M, Sofer Z. Advanced Materials, 2017, 29, 1605299. 26 Zhang H, Ma Y, Chen Z. Nanoscale, 2015, 7, 19152. 27 Shu H, Li Y, Niu X, et al. Journal of Materials Chemistry C, 2017, 10, 1039. 28 Liu M Y, Huang Y, Chen Q Y, et al. Scientific Reports, 2016, 6, 29114. 29 Gao R F, Su W Y, Wang F, et al. Chinese Physics Letters, 2017, 34, 027201. 30 Sun D D, Su W Y, Wang F, et al. Chinese Physics Letters, 2018, 32(12), 2105. 31 Su W Y, Jiang J, Lu W, et al. Nano Letters, 2006, 6(6), 2091. 32 Su W Y, Jiang J, Luo Y. Chemical Physics Letters, 2005, 412(4-6), 406. 33 Wang C K, Y Luo. Journal of Chemical Physics, 2003, 119, 4923. 34 Wang C K, Fu Y, Luo Y. Physical Chemistry Chemical Physics, 2001, 3(3), 5017. 35 Mujica V, Kemp M, Ratner M A. Journal of Chemical Physics, 1994, 101(8), 6856. 36 Tian G J, Su W Y. Chinese Physics Letters, 2009, 26, 068501. 37 Zahid F, Ghosh A W, Paulsson M, et al. Physical Review B, 2004, 70(24), 245317. 38 Jiang J, Lu W, Luo Y. Chemical Physics Letters, 2004, 400(4-6), 336. 39 Luo Y, Wang C K, Fu Y. Journal of Chemical Physics, 2002, 117(22), 10283. 40 Frisch M J, et al. Gaussian 09 Revision A.1., Gaussian Inc, Wallingford CT, 2009. 41 Jiang J, Wang C K, Luo Y. QCME-V1.0(Quantum chemistry for molecular electronics), Royal Institute of Technology Press, Sweden, 2005. 42 Liu R J. Journal of Shandong University of Technology (Natural Science Edition), 2019, 33(4), 54(in Chinese). 刘瑞金.山东理工大学学报(自然科学版), 2019, 33(4), 54.