Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2105-2111    https://doi.org/10.11896/j.issn.1005-023X.2018.12.031
  计算模拟 |
单层黑磷和蓝磷扩展分子结的电子输运特性
孙豆豆,苏文勇
北京理工大学物理学院,北京 100081
Electron Transport Properties of Monolayer Black Phosphorus and Blue Phosphorus Molecular Junctions
SUN Doudou, SU Wenyong
School of Physics, Beijing Institute of Technology, Beijing 100081
下载:  全 文 ( PDF ) ( 3966KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作应用非平衡格林函数理论和密度泛函理论研究了二维材料单层黑磷扩展分子结和蓝磷扩展分子结的电子输运特性,以及在应力作用下能隙和伏安特性的变化特点。结果发现,两种扩展分子结在发生应变(拉伸和压缩)过程中,随着应变(拉伸和压缩)的增加,HOMO能量和LUMO能量逐步靠近,导致能隙逐渐降低,分别减小了0.67 eV和1.33 eV。能隙降低,同时导通轨道间隔和导通轨道迁移率也降低,导致伏安特性曲线中量子化台阶逐渐消失,出现了类似金属的I-V曲线特点。此外,单层黑磷扩展分子结在0.75~2.00 V范围内产生稳定电流,有望应用于电路中的稳流装置。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙豆豆
苏文勇
关键词:  黑磷  蓝磷  扩展分子结  电子输运  能隙    
Abstract: Nonequilibrium green function theory (NGFT) and density functional theory (DFT) were performed to investigate the electronic-transport properties and the effects of strain on energy gaps and current-voltage characteristics of 2D materials monolayer black phosphorus and blue phosphorus molecular junctions. We find that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) close to each other with the increase of strain (tension or compression) gradually, which result in the energy gaps of black phosphorus and blue phosphorus molecular junctions decrease by 0.67 eV and 1.33 eV, respectively. The reduction of energy gap, the diminution of the interval of conduction orbits and the decrease of conduction orbital mobility cause the quantized steps of I-V curve disappear gradually, which leads to the emergence of the characteristic similar to metal in I-V curve. Moreover, the monolayer black phosphorus molecular junction produces a stable current in the range of 0.75—2.00 V, which is expected to act as the stabilizer of circuits.
Key words:  black phosphorus    blue phosphorus    extended molecular junction    electronic transport    energy gap
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  O469  
基金资助: 国家自然科学基金(11374033)
作者简介:  孙豆豆:女,1992年生,硕士研究生,研究方向为磷、磷化硅等薄膜的电子输运特性 E-mail:993517475@qq.com 苏文勇:通信作者,男,1969年生,博士,副教授,硕士研究生导师,研究方向为纳米电子学 E-mail:suwy@bit.edu.cn
引用本文:    
孙豆豆,苏文勇. 单层黑磷和蓝磷扩展分子结的电子输运特性[J]. 《材料导报》期刊社, 2018, 32(12): 2105-2111.
SUN Doudou, SU Wenyong. Electron Transport Properties of Monolayer Black Phosphorus and Blue Phosphorus Molecular Junctions. Materials Reports, 2018, 32(12): 2105-2111.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.031  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2105
1 Reed M A, Zhou C, Muller C J, et al. Conductance of a molecular junction[J]. Science,1997,278(5336):252.
2 Park H, Lim A K L, Alivisatos A P, et al. Fabrication of metallic electrodes with nanometer separation by electromigration[J]. Applied Physics Letters,1999,75(2):301.
3 Tsutsui M, Taniguchi M, Kawai T. Local heating in metal-molecule-metal junctions[J]. Nano Letters,2008,8(10):3293.
4 Xu B Q, Tao N J. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science,2003,301(5637):1221.
5 Parker S M, Smeu M, Franco I, et al. Molecular junctions: Can pulling influence optical controllability?[J]. Nano Letters,2014,14(8):4587.
6 Artem M, David V, Velimir M, et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts[J]. Nano Letters,2010,10(1):156.
7 Wu Y Q, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon[J]. Nature,2011,472(7341):74.
8 Tahir M, Schwingenschlogl U. Valley polarized quantum hall effect and topological insulator phase transitions in silicone[J]. Scientific Reports,2013,3(6118):1075.
9 Watzinger H, Kloeffel C, Vukusic L, et al. Heavy-Hole states in germanium hut wires[J]. Nano Letters,2016,16(11):6879.
10 Greil J, Lugstein A, Zeiner C, et al. Tuning the electro-optical properties of germanium nanowires by tensile strain[J]. Nano Letters,2012,12(12):6230.
11 Wang X Q, Li H D, Wang J T. Induced ferromagnetism in one-side semihydrogenated silicene and germanene[J]. Physical Chemistry Chemical Physics,2012,14(9):3031.
12 Levendorf M P, Kim C J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry[J]. Nature,2012,488(7413):627.
13 Wang Q H, Kalantarzadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology,2012,7(11):699.
14 Das S, Zhang W, Demarteau M, et al. Tunable transport gap in phosphorene[J]. Nano Letters,2014,14(10):5733.
15 Ziletti A, Carvalho A, Trevisanutto P E, et al. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation[J]. Physical Review B,2014,91:085407.
16 Shulenburger L, Baczewski A D, Zhu Z, et al. The nature of the interlayer interaction in bulk and few-layer phosphorus[J]. Nano Letters,2015,15(12):8170.
17 Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications,2014,5:4475.
18 Xiao J, Long M Q, Zhang X J, et al. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets[J]. Scientific Reports,2015,5: 9961.
19 Mogulkoc Y, Modarresi M, Mogulkoc A, et al. Electronic and optical properties of bilayer blue phosphorus[J]. Computational Mate-rials Science,2016,124: 23.
20 Zhu L Y, Wang S S, Guan S, et al. Blue phosphorene oxide: Strain-tunable quantum phase transitions and novel 2D emergent fermions[J]. Nano Letters,2016,16(10):6548.
21 Zhang J L, Zhao S T, Han C, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus[J]. Nano Lettres,2016,16(8):4903.
22 Zeng J, Cui P, Zhang Z Y. Half layer by half layer growth of a blue phosphorene monolayer on a GaN(001) substrate[J]. Physical Review Letters,2017,118(4):046101.
23 Xiao J, Long M Q, Deng C S, et al. Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study[J]. Journal of Physical Chemistry C,2016,120(8):4638.
24 Aierken Y, Cakir Deniz, Sevik C, et al. Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach[J]. Physical Review B,2015,92(8):081408.
25 Hashmi A, Hong J. Transition metal doped phosphorene: First-principles study[J]. Journal of Physical Chemistry C,2015,119(17):9198.
26 Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms[J]. Nano Letters,2016,16(4):2145.
27 Sui X L, Si C, Shao B, et al. Tunable magnetism in transition-metal-decorated phosphorene[J]. Journal of Physical Chemistry C,2015,119(18):10059.
28 Boukhvalov D W, Rudenko A N, Prishchenko D A, et al. Chemical modifications and stability of phosphorene with impurities: A first principles study[J]. Physical Chemistry Chemical Physics,2015,17(23):15209.
29 Ghosh B, Nahas S, Bhowmick S, et al. Electric field induced gap modification in ultrathin blue phosphorus[J]. Physical Review B,2015,91(11):115433.
30 Zhang S, Yang J, Xu R, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J]. ACS Nano,2014,8(9):9590.
31 Zhu Z, Tomanek D. Semiconducting layered blue phosphorus: A computational study[J]. Physical Review Letters,2014,112(17):176802.
32 Ju Weiwei, Li Tongwei, Yong Yongliang, et al. Band gap of few-layer black phosphorus modulated by thickness and strain[J]. Journal of Atomic and Molecular Physics,2015,32(2):330(in Chinese).
琚伟伟, 李同伟, 雍永亮, 等. 多层黑磷中厚度和应力依赖的能隙变化研究[J]. 原子与分子物理学报,2015,32(2):330.
33 Liu L Z, Wu X L, Liu X X, et al. Strain-induced band structure and mobility modulation in graphitic blue phosphorus[J]. Applied Surface Science,2015,356: 626.
34 Su W Y, Jiang J, Luo Y. Quantum chemical study of coherent electron transport in oligophenylene molecular junctions of different lengths[J]. Chemical Physics Letters,2005,412(4-6):406.
35 Luo Y, Wang C K, Fu Y. Effects of chemical and physical modifications on the electronic transport properties of molecular junctions[J]. Journal of Chemical Physics,2002,117(22):10283.
36 Wang C K, Luo Y. Current-voltage characteristics of single molecular junction: Dimensionality of metal contacts[J]. Journal of Chemical Physics,2003,119(9):4923.
37 Wang C K, Fu Y, Luo Y. A quantum chemistry approach for current-voltage characterization of molecular junctions[J]. Physical Chemistry Chemical Physics,2001,3(3):5017.
38 Jiang J, Lu W, Luo Y. Length dependence of coherent electron transportation in metal-alkanedithiol-metal and metal-alkanemonothiol-metal junctions[J]. Chemical Physics Letters,2004,400(4-6):336.
39 Mujica V, Kemp M, Ratner M A. Electron conduction in molecular wires. I. A scattering formalism[J]. Journal of Chemical Physics,1994,101(8):6849.
40 Tian G J, Su W Y. Two possible configurations for silver-C60-silver molecular devices and their conductance characteristics[J]. Chinese Physics Letters,2009,26(6):068501.
41 Zahid F, Ghosh A W, Paulsson M, et al. Charging-induced asymmetry in molecular conductors[J]. Physical Review B,2004,70(24):245317.
[1] 贾蕾, 雷天民. 二维黑磷物理性质及化学稳定性的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1100-1106.
[2] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed