Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10176-10183    https://doi.org/10.11896/cldb.20030075
  高分子与聚合物基复合材料 |
二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响
龙涛1,2, 杨新国1,2, 李丝雨1,2, 王影1,2, 毛凤余1,2
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南大学,湖南省喷射沉积技术及应用重点实验室,长沙 410082
Effects of Binary Solvent System on Aggregation Behaviors and Photoelectric Properties of Perylene Imide Derivative with Secondary Amine Groups
LONG Tao1,2,YANG Xinguo1,2,LI Siyu1,2,WANG Ying1,2,MAO Fengyu1,2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Key Laboratory for Spray Deposition Technology and Application of Hunan Province, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 5253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计了一种含仲胺基团的苝酰亚胺衍生物N,N-二(2-乙基乙二胺基)-1,6,7,12-四(4-叔丁基苯氧基)-3,4,9,10-苝酰亚胺(B-PDI-1),并采用紫外吸收光谱与荧光光谱研究了B-PDI-1在四氢呋喃(THF)/H2O混合溶剂中的光物理性质;通过扫描电镜(SEM)与X射线粉末衍射(XRD)表征B-PDI-1在THF/H2O中所形成的聚集体形态结构; 利用循环伏安法(CV)与Guassion模拟运算研究了其变色机理; 使用电化学工作站测定了聚集体的J-V曲线与瞬态光响应,并评估了它的光伏性能。结果表明,B-PDI-1在THF/H2O二元溶剂体系自组装过程中由红色变为蓝色,其紫外吸收光谱则出现了红移现象,在THF含量fTHF=10%时达到了最大值35.4 nm,随着THF/H2O二元溶剂体系中THF含量减少,荧光强度将会逐渐降低,但始终存在着微弱的荧光,意味着B-PDI-1具有J型聚集的特征;B-PDI-1在不同THF/H2O比例的混合溶液中都能形成具有明确形貌的聚集体,在不同THF含量的溶液中分别获得了螺旋带状、长斜四边形、棒状、类球形以及长直纳米带等纳米结构;随着该组装体系中THF含量发生变化,分子堆积方式也将改变,分子间的微扰作用集中体现在HOMO能级的提高,由于不同聚集体能带的差异导致了颜色的变化,且在fTHF=10%时B-PDI-1的光波转化效率达到最大值(0.43%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙涛
杨新国
李丝雨
王影
毛凤余
关键词:  苝酰亚胺  自组装  仲胺基团  电子结构  光伏性能  二元溶剂体系    
Abstract: Aperylene imide derivative N,N- 2(2-ethylethylenediamine)-1,6,7,12-4(4-tert-butyl phenylexy)-3,4,9,10-perylene imide (B-PDI-1) containing secondary amine group prepared. The photophysical properties of B-PDI-1 in THF/H2O self-assembly systems with different THF fractions were investigated by UV-vis and fluorescence spectrum.The morphologies and structures of B-PDI-1 in THF/H2O was characterized by SEM and XRD. Cyclic voltammetry (CV) was used to study the influence of binary solvent environment on the electronic structure of aggregates. The electrochemical workstation was used to measure the J-V curve and transient light response of the aggregate, and the photovoltaic perfor-mance was evaluated. The results showed that the absorption of B-PDI-1 in THF/H2O in the UV-vis spectrum showed red-shift phenomenon, and the maximum value reached 35.4 nm when fTHF=10%. With the decrease of fTHF in the THF/H2O binary solvent system, the fluorescence gra-dually decreased, but there was always a trace fluorescence. B-PDI-1 adopted J-type aggregation in THF/H2O.B-PDI-1 form aggregates with distinct morphologies in mixed solutions with different THF/H2O ratios. In solutions with different fTHF, the nanostructures of spiral strip, long oblique quadrilateral, rod shape, spherical shape and long straight nanoribbon are obtained respectively.With the change of fTHF, the mole-cular packing mode is changed, and the perturbation between molecules is mainly manifested in the improvement of HOMO energy level. The difference of energy band of different aggregates causes the color change, and the maximum light wave conversion efficiency is 0.43% at fTHF=10%.
Key words:  perylene imide    self-assembly    secondary amine groups    electron structure    photovoltaic performance    binary solvent system
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  O641.3  
基金资助: 国家自然科学基金(50573019;51273061);湖南省自然科学基金(2016JJ2027)
通讯作者:  xgyang@hnu.edu.com   
作者简介:  龙涛,2020年7月毕业于湖南大学,获得工程硕士学位。2017年9月至2020年7月在湖南大学材料科学与工程学院学习,主要从事超分子材料自组装和高分子材料改性领域的研究。
杨新国,副教授。2003年7月至今在湖南大学材料科学与工程学院任教,主要开展新型有机高分子功能材料的合成与组装的工作。主持和参加过多项国家自然科学基金以及省自然科学基金项目,发表论文40余篇。
引用本文:    
龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
LONG Tao,YANG Xinguo,LI Siyu,WANG Ying,MAO Fengyu. Effects of Binary Solvent System on Aggregation Behaviors and Photoelectric Properties of Perylene Imide Derivative with Secondary Amine Groups. Materials Reports, 2021, 35(10): 10176-10183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030075  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10176
1 Whitesides G M, Mathias J P, Seto C T. Sicence, 1991, 254(5036),1312.
2 Kausik B, Ritaban H, Biman J, et al. Journal of Physical Chemistry C, 2019, 123, 6241.
3 Sahnawaz A, Bapan P, Amba S K N, et al. Scientific Reports, 2017, 7, 9485.
4 Geraldine E, Guy C L, Charl F J F. Chemistry-A European Journal, 2015, 21, 5118.
5 Guo Qiang, Wang Junchao, Zhu Lingyun, et al. Chinese Journal of Chemistry, 2015, 33, 95.
6 Ma Hongchao, Fei Jinbo, Li Qi, et al. Small, 2015, 11,1787.
7 Wang Chao, Chen Qishui, Xu Huaping, et al. Advanced Materials, 2010, 22, 2553.
8 Wang Xin, Zeng Ting, Nourrein Mohamed, et al. RSC Advances, 2017, 7, 26074.
9 Elisa A, Vincenzo G, Rishat D, et al. Physical Chemistry Chemical Phy-sics, 2019, 21, 18300.
10 Seong Hun Yu, Boseok Kang, Gukil An, et al. ACS Applied Materials & Interfaces, 2015, 7,2025.
11 Hu Zhaosheng, Lin Zhenhua, Su Jie, et al. ACS Applied Electronic Materials, 2019, 1, 2030.
12 Zhao Donglin, Wu Qinghe, Cai Zhengxu, et al. Chemistry of Materials, 2016, 28,1139.
13 Eduardo Aluicio-Sarduy, Ranbir Singh, Zhipeng Kan, et al.ACS Applied Materials & Interfaces, 2015, 7,8687.
14 Ranbir S, Ester G, Marta M M, et al. Organic Electronics, 2014, 15,1347.
15 Chiu Tienlung, Chuang Kaihsiang, Lin Chifeng, et al. Thin Solid Films, 2009, 517,3712.
16 Bapan Pramanik, Julfikar Hassan Mondal, Nilotpal Singha, et al. ChemPhysChem, 2017, 18,245.
17 Manuel G R, Marta M V, Víctor N F, et al. Journal of Materials Chemistry C, 2013, 1,1182.
18 Shao Yu, Yin Guangzhong, Ren Xiangkui, et al. RSC Advances, 2017, 7, 6530.
19 Mohammed J F, Mark A P, Jessica B, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 153, 124.
20 Li Mei, Xu Jiaru, Zeng Yang, et al. Dyes and Pigments, 2017, 139,79.
21 Qu Jianfei, Mu Zhao, Lai Hanjian,et al. ACS Applied Energy Materials. 2018, 1, 833.
22 Chen Shuai, Slattum Paul, Wang Chuanyi, and et al. Chemical Reviews, 2015, 115, 11967.
23 Kausik Bag, Pradip Kumar Sukul, Dines Chandra Santra, et al. RSC Advances, 2016, 6, 34027.
24 Li Siyu, Long Tao, Wang Ying, et al. Dyes and Pigments, 2020, 173, 107896.
25 Lv Baozhong, You Shusen, Li Pengyu, et al. Chemistry-A European Journal, 2017, 23, 397.
26 Peter Spenst, Frank Wîrthner. Angewandte Chemie International Edition, 2015, 54,10165.
27 Li N, Athanassios Z P, et al. Langmuir, 2017, 33, 6021.
28 Joseph K G, Emma J A, Robert A. Chemical Communications, 2012, 48,7961.
29 Shang Xiaobo, Song Inho, Ohtsu Hiroyoshi, et al. Scientific Reports, 2017, 7,5508.
30 Erin R J, Shahar K, Paula M S,et al. Journal of the American Chemical Society, 2010, 132,6498.
31 Dai Yulan, Guo Meiyuan, Peng Jingdong, et al. Chemical Physics Letters, 2013, 556,230.
32 Peter W M, Christoph S, Konstantin D, et al. Journal of the American Chemical Society, 2018, 140,5427.
33 Juliusz S. Synthetic Metals, 2018, 235,125.
34 Pradhan S, Redwine J, Mcleskey J J T, et al, Thin Solid Films, 2014, 562, 423.
[1] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[2] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[3] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[4] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[5] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[6] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[7] 李飞, 林成. 余氏理论的内涵及发展展望[J]. 材料导报, 2020, 34(13): 13109-13113.
[8] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[9] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[10] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[11] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[12] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[13] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[14] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[15] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed