Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12110-12113    https://doi.org/10.11896/cldb.20030073
  金属与金属基复合材料 |
Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系
屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇
辽宁工业大学材料科学与工程学院,锦州121001
Relationship Between the Valence Electron Structure of Ω and the Ability of Precipitation Hardening in Al-Cu-Mg-Ag Alloys
QU Hua, XU Qiaozhi, LIU Weidong, QI Jianxue, LOU Qi, JIANG Xinyu
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
下载:  全 文 ( PDF ) ( 2388KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于固体与分子经验电子(Empirical electron theory of solids and molecules,EET)理论,计算了Ω相的价电子结构,分析了主键络的空间分布形态,研究了最强共价键与位错运动、共价电子密度与析出相强度、成键能力与析出相稳定性的关系。结果表明:Ω相共价主干键络呈三维“梅花”状分布,“花心”由Cu-Cu原子最强共价键连接;基体α最强共价键的键合力n1α为0.208 57,Ω相的n1Ω为0.490 56,基体{111}晶面上析出的Ω相使{111}晶面上位错滑移的阻力增加135.20%;从共价电子密度看,Ω相强度比S、θ′相的分别大2.67%和15.83%;从成键能力看,Ω相的稳定性比S和θ′相的分别大91.31%和291.92%;从共价电子结构看,{111}晶面析出的Ω相的沉淀硬化能力比{001}晶面析出的S、θ′相强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈华
徐巧至
刘伟东
齐健学
娄琦
蒋新宇
关键词:  Al-Cu-Mg-Ag合金  Ω相  EET理论  价电子结构  沉淀硬化    
Abstract: Based on the empirical electron theory of solids and molecules, the VES of Ω phase was calculated in this paper, then the spatial distribution of the primary bond of covalent bonds was analyzed, the relationships between the strongest covalent bond and dislocation motion, the covalent electron density and the precipitate strength, and the bonding ability and the precipitate stability were studied. It is showed that the main bond-net distribution appears plum blossom-like and the flower heart is connected by the strongest covalent bond with Cu-Cu atoms. The bonding force of the strongest covalent bond of the matrix α is 0.208 57 while that of Ω is 0.490 56, so the Ω precipitation from {111} plane of the matrix can make the block of dislocation slip on {111} plane increased by 135.20%. The strength of Ω is 2.67%, 15.83% bigger than that of S and θ′ respectively from the point of view of the covalence electron density. The stability of Ω is 91.31%, 291.92% bigger than that of S and θ′ respectively from the point of view of bonding ability. The precipitation-hardening ability of phase Ω precipitated form {111} plane is stronger than that of phase S and phase θ′ precipitated form {001} plane respectively from the point of view of covalence electron structure.
Key words:  Al-Cu-Mg-Ag alloy    Ω phase    empirical electron theory of solids and molecules    valence electron structure    precipitation hardening
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG113.25  
基金资助: 辽宁省科技厅辽宁省科学技术计划项目(SY2016008)
通讯作者:  liutongzi@sina.com   
作者简介:  屈华,辽宁工业大学材料科学与工程学院教授。2006年6月毕业于东北大学,获得材料物理与化学专业博士学位,主要从事钛合金、铝合金微观结构与力学性能的价键理论研究及应用,在国内外期刊发表学术论文40多篇。
刘伟东,辽宁工业大学材料科学与工程学院教授。2002年6月毕业于东北大学,获得材料物理与化学专业博士学位,2003—2005年在上海交通大学材料科学与工程学院从事博士后研究工作,主要从事金属材料组织与力学性能的EET理论研究及应用,在国内外期刊发表学术论文60多篇。
引用本文:    
屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
QU Hua, XU Qiaozhi, LIU Weidong, QI Jianxue, LOU Qi, JIANG Xinyu. Relationship Between the Valence Electron Structure of Ω and the Ability of Precipitation Hardening in Al-Cu-Mg-Ag Alloys. Materials Reports, 2021, 35(12): 12110-12113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030073  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12110
1 Kang S J, Kim Y W, Kim M, et al. Acta Materialia, 2014, 81(11), 501.
2 Liu Z Y, Li Y T, Liu Y B, et al. The Chinese Journal of Nonferrous Metals, 2007, 17(12), 1905 (in Chinese).
刘志义,李云涛,刘延斌,等.中国有色金属学报, 2007, 17(12), 1905.
3 Xia Y G, Wang J F, Zhang G P, et al.Special Casting and Nonferrous Alloys, 2019, 39(8), 914.
4 Ringer S P, Yeung W, Muddle B C, et al.Acta Metallurgica et Materialia, 1994, 42(5), 1715.
5 Hutchinson C R, Fan X, Pennycooks S J, et al. Acta Materialia, 2001, 49, 2827.
6 Hono K, Sano N, Babu S S, et al.Acta Metallurgica et Materialia, 1993, 41(3), 829.
7 Knowles K M, Stobbs W M.Acta Crystallographica Section B, 1988, 44, 207.
8 Bakavos D, Prangnell P B, Bes B, et al. Materials Science and Enginee-ring A, 2008, 419, 214.
9 Hou Y H, Li G Q, Liu Z Y, et al. Rare Metal Materials and Enginee-ring, 2011, 40(3), 407 (in Chinese).
侯延辉, 李光强,刘志义,等.稀有金属材料与工程, 2011, 40(3), 407.
10 Zhang R L. Empirical electron theory of solids and molecules, Jilin Science and Technology Press, China, 1993 (in Chinese).
张瑞林. 固体与分子经验电子理论, 吉林科学技术出版社, 1993.
11 Liu Z L, Li Z L, Liu W D. Valence electron structure of interface and their properties, Science Press, China, 2002 (in Chinese).
刘志林, 李志林, 刘伟东. 界面价电子结构与界面性能, 科学出版社, 2002.
12 Liu W D, Liu Z L, Qu H. Rare Metal Materials and Engineering, 2003, 32(11), 902 (in Chinese).
刘伟东, 刘志林, 屈华. 稀有金属材料与工程, 2003, 32(11), 902.
13 Liu W D, Qu H. Rare Metal Materials and Engineering, 2013, 42(S2), 574 (in Chinese).
刘伟东, 屈华. 稀有金属材料与工程, 2013, 42(S2), 574.
14 Liu W D, Zhang X, Qu H. Materials Reports B:Research Papers, 2018, 32(2), 672 (in Chinese).
刘伟东, 张旭, 屈华. 材料导报:研究篇, 2018, 32(2), 672.
15 Radmilovic V, Kilaaa R, Dahmen U, et al. Acta Materialia, 1999, 47(15), 3987.
16 Qu H, Liu W D, Wang H X. Rare Metal Materials and Engineering, 2011, 40(S2),140 (in Chinese).
屈华, 刘伟东, 王海霞. 稀有金属材料与工程, 2011, 40(S2), 140.
[1] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[2] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[3] 林成, 于佳石, 尹桂丽, 张爱民, 赵志伟, 黄士星, 赵永庆, 郭丽丽. 钛合金中ω相变的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 72-76.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed