Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22022-22026    https://doi.org/10.11896/cldb.20090186
  无机非金属及其复合材料 |
蓝宝石表面原位玻璃化处理及性能研究
沈潇1, 魏钦华1, 张伟杰1, 唐高1, 陈振华1, 秦来顺1, 史宏声2
1 中国计量大学材料与化学学院,杭州 310018
2 中国科学院新疆理化技术研究所,乌鲁木齐 830011
In-situ Vitrification Preparation and the Properties of Sapphire Surface
SHEN Xiao1, WEI Qinhua1, ZHANG Weijie1, TANG Gao1, CHEN Zhenhua, QIN Laishun1, SHI Hongsheng2
1 College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
2 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
下载:  全 文 ( PDF ) ( 2701KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用表面原位玻璃化处理方法,可成功制备高透过率的蓝宝石样品。紫外-可见透过光谱的测试结果表明,未抛光的蓝宝石基体经过表面玻璃化处理后透过率得到了显著的提高。经过玻璃化处理,蓝宝石的理论透过率从85%提高到90.2%。同时,测量并系统地讨论蓝宝石样品的热膨胀系数(CTE)、差示扫描量热(DSC)、折射率和显微硬度等一系列性能。结果表明,该玻璃层具有热稳定性良好、显微硬度高且与蓝宝石的热膨胀匹配度良好,其诸多物理性能可以通过调整玻璃层的组成和厚度来调控。研究表明,表面玻璃化处理是减少蓝宝石抛光时间和成本、提高粗糙表面蓝宝石光学性能的有效方法,为蓝宝石表面处理技术的发展提供了有益指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈潇
魏钦华
张伟杰
唐高
陈振华
秦来顺
史宏声
关键词:  蓝宝石  表面玻璃化处理  光学性质  玻璃层    
Abstract: The sapphire samples with high transmittance were prepared successfully by in-situ surface vitrification process. The UV-visible transmittance spectra results show that the transmittance of rough surface sapphire was greatly improved. The theoretical transmittance of sapphire was enhanced from 85% to 90.2% by vitrification process. The physical properties, such as coefficient of thermal expansion (CTE), differential scanning calorimetry (DSC), refractive index and microhardness, have been measured and systematically discussed. The results show that the glass coating has good thermostability, excellent thermal expansion matching with sapphire and high microhardness. It is important that those properties can be tuned by adjusting the glass coating composition and thickness. This study indicates that the in-situ surface vitrification is an effectively method to reduce the polishing time and cost of sapphire and enhance the optical properties. It provides a useful guide toward the development of surface treatment technology.
Key words:  sapphire    surface vitrification process    optical property    glass coating
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TB303  
基金资助: 国家自然科学基金(11975220;51972291)
通讯作者:  weiqinhua1985@163.com   
作者简介:  沈潇,中国计量大学材料与化学学院硕士研究生,主要从事人工晶体材料的制备及其性能研究。
魏钦华, 现为中国计量大学材料与化学学院专任教师,副教授,硕士研究生导师,于2011年获得中国计量大学材料物理与化学硕士学位,于2014年在中国科学院上海硅酸盐研究所获得博士学位。主要从事闪烁晶体生长及其器件研究、光学材料的制备及性能研究。
引用本文:    
沈潇, 魏钦华, 张伟杰, 唐高, 陈振华, 秦来顺, 史宏声. 蓝宝石表面原位玻璃化处理及性能研究[J]. 材料导报, 2021, 35(22): 22022-22026.
SHEN Xiao, WEI Qinhua, ZHANG Weijie, TANG Gao, CHEN Zhenhua, QIN Laishun, SHI Hongsheng. In-situ Vitrification Preparation and the Properties of Sapphire Surface. Materials Reports, 2021, 35(22): 22022-22026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090186  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22022
1 Eberle G, Schmidt M, Pude F, et al. Applied Surface Science, 2016, 378, 504.
2 Jeong C H, Kim D W, Bae J W, et al. Journal of Materials Science and Engineering B, 2002, 93, 60.
3 Miyazaki H, Hotta M, Kita H, et al. Ceramics International, 2012, 38, 1149.
4 Sheng P C, Zhao H, Bao J, et al. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 405.
5 Patel B S, Zaidi Z H. Measurement Science and Technology, 1999, 10, 146.
6 Leem J W, Yeh Y, Yu J S. Optics Express, 2012, 20 (4), 4056.
7 Thomas I M. Applied Optics,1998, 27, 3356.
8 Lin Y S, Hsu W C, Huang K C, et al. Applied Surface Science, 2001, 258, 2.
9 Leem J W, Yu J S. Optics Express, 2012, 20, 26160.
10 Miyazki H, Hotta M, Kita H, et al. Ceramics International, 2012, 38 (2), 1149.
11 Trunec M, Klimke J, Shen Z J J. Journal of the European Ceramic Society, 2016, 36(16), 4333.
12 Kravets V G. Optics and Spectroscopy, 2005, 98(3), 405.
13 Wei Q H, Lin J, Shi H S, et al. ACS Applied Materials & Interfaces, 2018, 10, 7693.
14 Nicole T W, Sushmit G, Shefford P B. Journal of Non-Crystalline Solids, 2020, 543, 120.
15 Litzman O, Dub P, Ševćík V. Optics Communications, 1984, 49(3), 169.
16 Kryukova O N, Knyazeva A G, Pogrebenkov V.M, et al. Journal of Materials Science, 2017, 52(19), 11314.
17 He J, Avnir D, Zhang L. Acta Materialia, 2019, 174, 418.
[1] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[2] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[3] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[4] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[5] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[6] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[7] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[8] 张睿, 顾晓龙, 庞欢. 新型异金属三羰基铼配合物的合成及光学性质研究[J]. 《材料导报》期刊社, 2018, 32(8): 1252-1257.
[9] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed