Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12169-12174    https://doi.org/10.11896/cldb.20040123
  高分子与聚合物基复合材料 |
掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究
李道亮1, 王嫦嫦1,2, 郭婷1, 周鸿媛1, 张宇昊1,3, 马良1,3
1 西南大学食品科学学院,重庆 400715
2 武汉市农业科学院环境与安全研究所,武汉 430207
3 西南大学生物学研究中心,重庆 400715
Study on Preparation and Sensing System of Deltamethrin UCNP-Fe3O4-MIP Sensing Material Based on Doping Method
LI Daoliang1, WANG Changchang1,2, GUO Ting1, ZHOU Hongyuan1, ZHANG Yuhao1,3, MA Liang1,3
1 College of Food Science, Southwest University, Chongqing 400715, China
2 Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, China
3 Biological Science Research Center of Academy for Advanced Interdisciplinary Studies Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 3504KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以溴氰菊酯为模板分子,采用掺杂法制备了兼顾磁性、上转换和分子印迹特性的传感材料(UCNP-Fe3O4-MIP),并基于该传感材料建立高灵敏度、高选择性的传感体系,用于高效快速地识别分析果蔬中的溴氰菊酯。结果表明,上转换纳米材料(Upconversion particle, UCNP)是直径约为50 nm的六边形结构,呈均匀分布,经分子印迹层包裹后合成的UCNP-Fe3O4-MIP的直径约为170 nm。应用该传感体系检测溴氰菊酯的线性范围为0.001~0.8 mg/L,检出限为6.28×10-4 mg/L,对葡萄的加标回收率为89.59%~97.19%,相对标准偏差为6.08%~8.08%;对白菜的加标回收率为92.71%~103.82%,相对标准偏差为4.22%~8.93%,与气相色谱法进行方法对比,准确度无显著性差异。本工作所采用方法的灵敏度比高效液相色谱高2个数量级,传感检测仅需大约1 min,操作步骤简单方便,检测成本低。本工作建立的磁性上转换分子印迹传感体系可用于拟除虫菊酯类农药溴氰菊酯的快速、低成本、高灵敏和高特异性的测定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李道亮
王嫦嫦
郭婷
周鸿媛
张宇昊
马良
关键词:  溴氰菊酯  分子印迹聚合物  上转换荧光纳米材料  磁性纳米材料  高灵敏    
Abstract: IIn this work,the magnetic upconvertion molecularly imprinted polymer (UCNP-Fe3O4-MIP) was firstly prepared using deltamethrin as the template by doping method. Based on the sensing materials, a highly sensitive and highly selective sensing system was established for the efficient and rapid detection of deltamethrin in fruits and vegetables. The results showed that UCNP was a uniformly distributed hexagonal structure with a diameter of about 50 nm, and the UCNP-Fe3O4-MIP with a diameter of about 170 nm which was wrapped with a molecularly imprinted layer. The linear range and the detection limit of deltamethrin detection using this sensing system were 0.001—0.8 mg/L and 6.28×10-4 mg/L, respectively. The spike recovery rate of grape was 89.59%—97.19% with RSD at the range of 6.08%—8.08% while the spike recovery rate of cabbage was 92.71%—103.82% with RSD at the range of 4.22%—8.93%. Compared with the gas chromatography method, no significant difference in accuracy but two orders of magnitude higher sensitivity was observed. Besides, the magnetic upconversion molecularly imprinted sensing material can be easily used and the detection time was only about 1 min, which make this method time-saving and inexpensive. Generally, the magnetic upconversion molecular imprinting sensing system established in this study could be used for the rapid and low-cost determination of deltamethrin with high sensitivity and specificity.
Key words:  deltamethrin    molecularly imprinted polymer    upconversion fluorescent nanoparticle    magnetic nanomaterials    highly-sensitive
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TS207  
基金资助: 重庆市留学人员回国创业创新支持计划(cx2018032); 重庆市应用开发(重点)项目(cstc2013yykfB80016)
通讯作者:  zhyhml@swu.edu.cn   
作者简介:  李道亮,自2018年9月就读于西南大学食品科学专业。主要从事食品安全与毒素检测领域的研究。
马良,博士,西南大学食品科学学院教授,硕士研究生导师,主要从事食品安全与质量控制、现代食品检测技术方向的研究。重点针对生物毒素、农药等小分子污染物进行高灵敏度识别与鉴定检测技术,快检产品、传感器等小型快速检测装备的研究。主持国家自然科学基金项目、国家973计划子课题、国家863计划子课题、重庆市技术创新与应用示范项目、重庆市留学人员创业创新支持计划(优秀)项目等科研项目。以第一完成人获得授权国家发明专利5项,国家实用新型专利1项。
引用本文:    
李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
LI Daoliang, WANG Changchang, GUO Ting, ZHOU Hongyuan, ZHANG Yuhao, MA Liang. Study on Preparation and Sensing System of Deltamethrin UCNP-Fe3O4-MIP Sensing Material Based on Doping Method. Materials Reports, 2021, 35(12): 12169-12174.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040123  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12169
1 Lu Q, Sun Y, Ares I, et al. Environmental Research, 2019, 170, 260.
2 Zhang J, Liu H, Li J, et al. Chemosphere, 2020, 241, 125118.
3 Ye X, Li F, Zhang J, et al. Environmental Science & Technology, 2017, 51(17), 10212.
4 Marrone R, Ramkumar A, Smaldone G, et al. Molecules, 2019, 24(3), 517.
5 Markus V, Teralı K, Dalmizrak O, et al. Environmental Toxicology and Pharmacology, 2018, 61, 18.
6 Luo H, Masika J, Guan X, et al. Current Medical Science, 2019, 39(1), 21.
7 Wang C, Yang Y, Wu N, et al. Environmental Chemistry Letters, 2019, 17(4), 1693
8 Christen V, Joho Y, Vogel M, et al. Environmental pollution, 2019, 244, 247.
9 Tang X, Li N, Wang W, et al. Journal of Asia-Pacific Entomology, 2016, 19(1), 45.
10 Strungaru S, Plavan G, Ciobica A, et al. Ecotoxicology and Environmental Safety, 2019, 171, 854.
11 Zhang C, Zhang Q, Pang Y, et al. Science of the Total Environment, 2019, 653, 1426.
12 European Food Safety Authority. EFSA Journal, 2015, 13(11), 4309.
13 Ministry of Agriculture of the People's Republic of China. GB 2763-2019 National food safety standard-maximum residue limits for pesticides in food, Standards Press of China, China, 2019 (in Chinese).
中华人民共和国农业部. GB 2763-2019. 食品安全国家标准食品中农药最大残留限量,中国标准出版社, 2019.
14 Nardelli V, Casamassima F, Gesualdo G, et al. Journal of Agricultural and Food Chemistry, 2018, 66(39), 10267.
15 Shirani M, Akbari-Adergani B, Jazi M B, et al. Microchimica Acta, 2019, 186(10), 674.
16 Guo T, Zhang Y H, Ma L. Journal of Southwest University (Natural Science Edition), 2013, 35(8), 35(in Chinese).
郭婷,张宇昊,马良. 西南大学学报(自然科学版), 2013, 35(8), 35.
17 Luo Q, Li Y, Zhang M, et al. Chinese Chemical Letters, 2017, 28(2), 345.
18 Gong J, Gong F, Kuang Y, et al. Analytical and Bioanalytical Chemistry, 2004, 379(2), 302.
19 Xie C, Zhou H, Gao S, et al. Microchimica Acta, 2010, 171(3-4), 355.
20 Li C, Lin J. Journal of Materials Chemistry, 2010, 20(33), 6831.
21 Li Z, Zhang Y. Angewandte Chemie International Edition, 2006, 45(46), 7732.
22 Zhang J, Shikha S, Mei Q, et al. Microchimica Acta, 2019, 186(6), 361.
23 Yang X, Liu M, Liu J, et al. Physical Chemistry Chemical Physics, 2020, 22(5), 2819
24 Ning H, Jing L, Hou Y, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11934.
25 Wiesholler L M, Frenzel F, Grauel B, et al. Nanoscale, 2019, 11(28), 13440.
26 Fu S, Ding Y, Cong T, et al. Dalton Transactions, 2019, 48(34), 12850.
27 Sheng W, Shi Y, Ma J, et al. Microchimica Acta, 2019, 186(8), 564.
28 Lv R, Jiang X, Yang F, et al. Biomaterials science, 2019, 7(11), 4558.
29 Shen J, Sun L, Zhang Y, et al. Chemical Communications, 2010, 46(31), 5731.
30 Cheng L, Yang K, Li Y, et al. Angewandte Chemie International Edition, 2011, 50(32), 7385.
31 Tang Y, Liu H, Gao J, et al. Talanta, 2018, 181, 95.
32 Shen J, Li K, Cheng L, et al. ACS Applied Materials & Interfaces, 2014, 6(9), 6443.
33 Wan X, Zhan Y, Long Z, et al. Applied Surface Science, 2017, 425, 905.
34 Martín M, Salazar P, Campuzano S, et al. Analytical Methods, 2015, 7(20), 8801.
35 Guo T, Deng Q, Fang G, et al. Biosensors and Bioelectronics, 2016, 85, 596.
36 Tian J, Bai J, Peng Y, et al. Analyst, 2015, 140(15), 5301.
37 Li Z, Zhang Y. Nanotechnology, 2008, 19(34), 345606.
38 Shen J W. The biological applications of multifunctionalupconversion composite nanoparticles. Master's Thesis, Soochow University, China, 2014 (in Chinese).
申建伟. 多功能上转换复合纳米材料的生物学应用. 硕士学位论文, 苏州大学, 2014.
39 Naccache R, Vetrone F, Mahalingam V, et al. Chemistry of Materials, 2009, 21(4), 717.
40 Zhang T, Ge J, Hu Y, et al. Nano Letters, 2007, 7(10), 3203.
41 Guo T, Deng Q, Fang G, et al. Biosensors and Bioelectronics, 2015, 74, 498.
42 Qian K, Fang G, He J, et al. Journal of Separation Science, 2010, 33(14), 2079.
43 Yang T, Huangfu W G, Xie X C. Food Science, 2009, 30(9), 85(in Chinese).
杨挺,皇甫伟国,谢显传. 食品科学, 2009, 30(9), 85.
44 Xu G F, Nie J Y, Li H F, et al. Journal of Instrumental Analysis, 2016, 35(8), 1021(in Chinese).
徐国锋,聂继云,李海飞,等. 分析测试学报, 2016, 35(8), 1021.
45 Yu F F, Kuai P, Zhou H X, et al. Agrochemicals, 2018, 57(5), 340(in Chinese).
于飞飞,郐鹏,周宏霞,等.农药, 2018, 57(5), 340.
No related articles found!
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed