Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21202-21210    https://doi.org/10.11896/cldb.20120038
  金属与金属基复合材料 |
铯钨青铜纳米材料的制备及其在节能领域的研究进展
王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇
北京信息科技大学仪器科学与光电工程学院,北京 100192
Progress in Preparation of Cesium Tungsten Bronze Nanomaterials and Their Films in the Field of Energy Saving
WANG Jingfei, YANG Mingqing, NIU Chunhui, LIU Lishuang, KANG Hao, LYU Yong
School of Instrument Science and Opto Electronics Engineering,Beijing information Science and Technology University, Beijing 100192, China
下载:  全 文 ( PDF ) ( 7686KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球能源需求不断上涨,节能技术已成为研究热点之一。铯钨青铜(CsxWO3)因其非化学计量比及特殊的晶体结构,使其光学性能具有较大优势。由铯钨青铜制备而成的薄膜具有良好的近红外屏蔽性能和较高的可见光透过率,因此将其涂覆在玻璃表面可以同时满足对采光和隔热的要求,在汽车和建筑节能领域具有十分诱人的前景。本文首先主要介绍了制备铯钨青铜纳米材料的方法,如水热法/溶剂热法、溶胶-凝胶法、固相反应法、喷雾热解法等,并讨论了不同方法制备的材料的形貌特征和光学性能;然后,介绍了铯钨青铜薄膜的制备方法及其光学与力学性能,进一步讨论了铯钨青铜薄膜性能的影响因素以及在制备过程中提高薄膜光学性能的方法;最后,就铯钨青铜薄膜在节能领域存在的问题、研究及应用方向进行了讨论与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王京飞
杨明庆
牛春晖
刘力双
康浩
吕勇
关键词:  铯钨青铜  纳米材料  薄膜  近红外屏蔽  节能    
Abstract: Energy-saving technology has become a research hotspot, with the rising demand for energy. Cesium tungsten bronze (CsxWO3) has been widely exploited in the field of energy saving because of its many advantages such as intrinsic non-stoichiometric ratio, special crystal structure. The film of cesium tungsten bronze on the glass could meet the need of daylighting and heat insulation at the same time because of its good near-infrared shielding performance and high visible light transmittance. The application prospect of CsxWO3 in the fields of automobile and buil-ding energy saving is very attractive. In the current paper, we mainly reviewed the synthesis of cesium tungsten bronze nanomaterials, such as: hydrothermal/solvothermal method, sol-gel method, solid-state reaction method, spray pyrolysis method, and then discussed the characterization and optical properties of cesium tungsten bronze. Followingly, the preparation, optical and mechanical properties of the films are also introduced in detail. Furthermore, the factors affecting the performance of cesium tungsten bronze films are discussed and how to improve the optical properties of the film during the preparation process is also presented. Finally, a summary and outlook were made by discussing existing problems of cesium tungsten bronze in the field of energy saving and future directions of related research and applications.
Key words:  cesium tungsten bronze    nanomaterials    film    near-infrared shielding    energy saving
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB3  
基金资助: 国家自然科学基金(21607158);“十三五”装备预研共用技术和领域基金(41414050205);国防军工重点计量科研项目(JSJL2019208B001)
通讯作者:  yangmingqing@bistu.edu.cn   
作者简介:  王京飞,2018年毕业于北京信息科技大学,获得工学学士学位。现为北京信息科技大学硕士研究生。目前主要研究方向为具有近红外屏蔽和电致变色性能的无机纳米材料。
杨明庆,2011年在中国科学院研究生院获得理学博士学位。2011—2018年于中国科学院理化技术研究所任助理研究员,2018年加入北京信息科技大学仪器科学与光电工程学院。现为北京信息科技大学副研究员,从事光电材料与器件、气体敏感材料与性能的研究工作。近年来,在光电材料、传感器领域发表论文30余篇,包括Sens. Actuators B: Chem.,ACS Appl. Mater. Interfaces,J. Colloid Interface Sci.和Environ. Sci. Technol.等。
引用本文:    
王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
WANG Jingfei, YANG Mingqing, NIU Chunhui, LIU Lishuang, KANG Hao, LYU Yong. Progress in Preparation of Cesium Tungsten Bronze Nanomaterials and Their Films in the Field of Energy Saving. Materials Reports, 2021, 35(21): 21202-21210.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120038  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21202
1 Gorgolis G, Karamanis D. Solar Energy Materials & Solar Cells, 2016, 144, 560.
2 Gao Y F, Luo H J, Zhang Z T, et al. Nano Energy, 2012, 1(2), 222.
3 Bahaj A S, James P A B, Jentsch M F. Energy & Buildings, 2007, 40(5), 720.
4 Ni Z F, Li X N, Guo Y. China Coatings, 2015, 30(1), 15 (in Chinese).
倪正发, 李雪妮, 郭宇.中国涂料, 2015, 30(1), 15.
5 Lv W Z, Zheng W M, Qiu Q, et al. Fine Chemicals, 2018, 35(8), 1279(in Chinese).
吕维忠, 郑威猛, 邱琦,等. 精细化工, 2018, 35(8), 1279.
6 Chen X Y, Liu Y P, Yao D H, et al. Guangdong Chemical Industry, 2017, 44(12), 75(in Chinese).
陈小勇, 刘远朋, 姚岱华,等. 广东化工, 2017, 44(12), 75.
7 Liu G H, Kong F D, Xu J, et al. Journal Of Materials Chemistry C, 2020, 8, 10342.
8 Li G L, Guo C S, Yan M, et al. Applied Catalysis B: Environmental, 2016, 183, 144.
9 Ye N F, Wang J J, Yan X H, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(8), 5485.
10 Guo C S, Yin S , Yu H J, et al. Nanoscale, 2013, 5(14), 6469.
11 Zhu D W, Shang M, Gu W J, et al. Silicon Valley, 2014, 17, 126(in Chinese).
祝大伟, 尚鸣, 顾万建,等. 硅谷, 2014, 17, 126.
12 Shi E W, Xia C T, Wang B G, et al. Journal of Inorganic Materials, 1996, 11(2), 193(in Chinese).
施尔畏, 夏长泰, 王步国,等. 无机材料学报, 1996, 11(2), 193.
13 Yoshimura M. Journal of Materials Research, 1998, 13, 796.
14 Guo C S, Yin S, Zhang P L, et al. Journal of Materials Chemistry, 2010, 20, 8227.
15 Qi S, Xiao X D, Lu Y, et al. CrystEngComm, 2019, 21, 3268.
16 Asakura Y, Anada Y, Hamanaka R, et al. Nanotechnology, 2018, 29(22), 224001.
17 Shi A, Li H H, Yin S , et al. Applied Catalysis B: Environmental, 2018, 228, 77.
18 Hosseini S, Azimi A, Dolabi M B. Materials Research Innovations, 2019, 24(6), 335.
19 Guo C S, Yin S, Adachi K, et al. IOP Conf. Series: Materials Science and Engineering, 2011, 18.
20 Guo C S, Yin S, Huang Y, et al. Functional Materials Letters, 2012, 5(2), 1.
21 Liu J X, Shi F, Dong X L, et al. Materials Characterization, 2013, 84, 183.
22 Eyassu T, Hsaio T J, Lin C T. Materials Research Express, 2015, 2(1),15016.
23 Ning W W, Zhang X, Chang H H, et al. Modern Chemical Industry, 2019, 39(4), 138(in Chinese).
宁雯雯, 张笑, 常宏宏,等. 现代化工, 2019, 39(4), 138.
24 Wu X Y, Yin S, Xue D F, et al. Nanoscale, 2015, 7, 17049.
25 Guo C S, Yin S, Dong Q, et al. International Journal of Nanotechnology, 2013, 10(1/2), 128.
26 Guo C S, Yin S, Yan M, et al. Journal of Materials Chemistry, 2011, 21, 5100.
27 Zhao L Y, Yang M Q, Lv Y. International Journal of Nanoscience, 2020, 19(4), 1950032-2.
28 Yao Y J, Zhang L M, Chen Z, et al. Ceramics International, 2018, 44(12), 13471.
29 Gao J B, Xu G D, Zhang J R. Shanghai Coatings, 2015, 53(1), 15(in Chinese).
高建宾, 许国栋, 张建荣.上海涂料, 2015, 53(1), 15.
30 Liu J X, Luo J Y, Shi F, et al. Journal of Solid State Chemistry, 2015, 221, 256.
31 Liu J X, Chen B, Fan C Y, et al. CrystEngComm, 2018, 20, 1512.
32 Liu J X, Ran S, Fan C Y, et al. Solar Energy, 2019, 178, 18.
33 Ran S, Liu J X, Shi F, et al. Materials Research Bulletin, 2019, 109, 276.
34 Liu J X, Wang X J, Shi F, et al. Advanced Materials Research, 2012, 531, 236.
35 Xu Q, Liu J X, Shi F, et al. Advanced Materials Research, 2013, 712-715, 284.
36 Shi F, Liu J X, Dong X L, et al. Journal of Materials Science and Technology, 2014, 30(4), 343.
37 Xu Q, Liu J X, Shi F, et al. Journal of Dalian Dalian Polytechnic University, 2015, 34(1), 56(in Chinese).
徐强, 刘敬肖, 史非,等. 大连工业大学学报, 2015, 34(1), 56.
38 Lin S Y, Zhang X Q, Huang Y, et al. Journal of Xiamen University(Natural Science), 2018, 57(5), 611(in Chinese).
林树莹, 张晓强, 黄悦,等. 厦门大学学报(自然科学版), 2018, 57(5), 611.
39 Li L L, Wang P, Zhang J S, et al. New Chemical Materials, 2019, 47(1), 19(in Chinese).
李丽华, 王鹏, 张金生,等. 化工新型材料, 2019, 47(1), 19.
40 You Y, Kuang J C. Hi-Tech Fiber&Application, 2002, 27(2), 12(in Chinese).
游咏, 匡加才.高科技纤维与应用, 2002, 27(2), 12.
41 Wang Q Q, Wang J L, Jiang S X, et al. Acta Physico-Chimica Sinica, 35(11), 1187(in Chinese).
王庆庆, 王锦玲, 姜胜祥,等. 物理化学学报, 2019, 35(11), 1187.
42 Kang X P. Journal of Guangdong University of Petrochemical Technology, 2012, 22(4), 4(in Chinese).
康新平.广东石油化工学院学报, 2012, 22(4), 4.
43 Zeng X Z, Zhou Y J, Ji S D, et al. Journal of Materials Chemistry C, 2015, 3, 8055.
44 Kyunghwan Moon, Jin Ju Cho, Ye Bin Lee, et al. Bulletin of the Korean Chemical Society, 2013, 34(3), 732.
45 Seong Yun Lee, Jae Young Kim, Jun Young Lee, et al. Nanoscale Research Letters, 2014, 9(1), 295.
46 Chen Y X, Zeng X Z, Zhou Y J, et al. Ceramics International, 2018, 44(3), 2739.
47 Lee J S, Liu H C, Peng G D, et al. Journal of Crystal Growth, 2017, 465, 28.
48 Hu G R, Liu Z M, Fang Z S, et al. Journal of Functional Materials, 2005, 36(3), 335(in Chinese).
49 Zhu Y J, Choi S H, Fan X L, et al. Advanced Energy Materials, 2017, 7(7), 1601578.
50 Tomoyuki Hirano, Shuhei Nakakura, Febrigia Ghana Rinaldi, et al. Advanced Powder Technology, 2018, 29(10), 2513.
51 Shuhei Nakakura, Keisuke Machida, Eishi Tanabe, et al. Advanced Powder Technology, 2020, 31(2), 703.
52 Tang G F, Yang F W, Feng Y T, et al. Engineering Plastics Application, 2020, 48(4), 100(in Chinese).
唐国凤, 阳范文, 冯泳婷,等. 工程塑料应用, 2020, 48(4), 100.
53 Kwangwon Park, Seokgyu Lim, Hyongseak Jeong, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(2), 1694.
54 Yu Z Y, Yao Y J, Yao J N, et al. Journal of Materials Chemistry A, 2017, 5, 6020.
55 Wang B, Wang Q J, Zhu Y T, et al. Materials Research Express, 2019, 6(8), 16.
56 Wu M C, Shi Y, Li R Y, et al. ACS Applied Materials and Interfaces, 2018, 10(46), 39823.
57 Wu P J, Sanjaya Brahma, Horng Hwa Lu, et al. Applied Physics A: Materials Science and Processing, 2020, 126(2), 98.
58 Chak Seng Long, Horng Hwa Lu, Ding-Fwu Lii, et al. Surface and Coa-tings Technology, 2015, 284, 75.
[1] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[2] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[3] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[4] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[5] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[6] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[7] 刘轶, 刘跃军, 李祥刚, 崔玲娜, 刘小超, 李樟华, 范淑红. 热拉伸对尼龙6薄膜微观结构与力学性能的影响[J]. 材料导报, 2021, 35(6): 6194-6199.
[8] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[9] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[10] 段鹏, 彭燕, 王希玮, 韩晓桐, 王笃福, 胡小波, 徐现刚. 用于MPCVD金刚石薄膜生长的高表面质量HTHP金刚石的制备[J]. 材料导报, 2021, 35(4): 4034-4037.
[11] 张仁耀, 郭俊梅, 闻明, 管伟明. 贵金属钌的制备、性能及应用研究进展[J]. 材料导报, 2021, 35(21): 21243-21248.
[12] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[13] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[14] 米庆博, 邢志国, 王海斗, 金国, 郭伟玲, 黄艳斐, 唐诗. 结构对钙钛矿压电薄膜电学性能影响的研究进展[J]. 材料导报, 2021, 35(15): 15065-15071.
[15] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed