Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15065-15071    https://doi.org/10.11896/cldb.19100094
  无机非金属及其复合材料 |
结构对钙钛矿压电薄膜电学性能影响的研究进展
米庆博1,2, 邢志国2, 王海斗1,2, 金国1, 郭伟玲2, 黄艳斐2, 唐诗3
1 哈尔滨工程大学,表面技术与腐蚀工程研究所,材料科学与化学工程学院,哈尔滨 150006
2 中国人民解放军陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
3 中国石油集团安全环保技术研究院,北京 102206
Influence of Structure on the Electrical Properties of Perovskite Piezoelectric Films: a Review
MI Qingbo1,2, XING Zhiguo2, WANG Haidou1,2, JIN Guo1, GUO Weiling2, HUANG Yanfei2, TANG Shi3
1 Institute of Surface/Interface Science and Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
2 National Key Laboratory for Remanufacturing, Armored Forces Engineering Institute, Beijing 100072, China
3 CNPC Research Institute of Safety & Environment Technology Co.,Ltd, Beijing 102206, China
下载:  全 文 ( PDF ) ( 5844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿结构的压电陶瓷具有压电系数高、机电耦合性能良好、性能稳定可靠等优点,其应用环境广泛,是当前重要的商用传感器及半导体元件制造材料之一。其中薄膜结构的钙钛矿压电材料的尺寸小,有利于集成复杂电路结构,在精密电子元件的制造上具有不可替代的优势。
然而,宏观上的尺寸降低、界面间的晶格失配以及成型过程中产生的气孔缺陷限制了畴壁的运动,致使薄膜材料表现出较低的铁电、压电、介电特性。近年来,研究者不断调整基体的种类并探索压电薄膜成型工艺的改进方法,试图优化压电薄膜因受结构特点限制而降低的电学性能。
研究认为,(100)、(110)、(111)是能够有效促进薄膜电学特性提升的晶粒取向,同时柱状的晶粒形状和大的晶粒尺寸能够进一步保证薄膜获得良好的电学性能。晶粒形状和晶粒尺寸强烈依赖于薄膜的厚度,而薄膜厚度的增加有利于各项电学性能的提升。另外,晶粒尺寸与薄膜厚度类似,二者均存在一临界值,在该值以下,电学响应几乎消失。界面处的失配应变导致的失配位错限制了电畴的运动,低介电常数层降低了薄膜的静电存储能力,是导致薄膜的电特性下降的重要因素。薄膜中孔隙的钉扎效应提高了新畴形核长大的能量势垒,同时也将抑制压电薄膜中四方相向菱形相的转变,这使得孔隙在降低压电薄膜压电系数(d33)的同时,也有可能增强薄膜的热稳定性。此外,近年来的研究发现,薄膜的机械耦合性能与孔隙率存在正相关关系。
文中针对压电陶瓷薄膜结构及结构特征产生的应力对其性能的影响进行论述,阐述了薄膜晶体结构、几何结构及缺陷分别对材料电学性能的影响,分析了薄膜内部微区结构对畴壁运动的作用机制。随着智能制造行业的快速发展,压电陶瓷薄膜势必向着尺寸更小、结构设计更复杂、使用范围更广泛、功能更全面、集成度更高的方向发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米庆博
邢志国
王海斗
金国
郭伟玲
黄艳斐
唐诗
关键词:  压电薄膜  晶粒取向  尺寸  晶格失配  缺陷    
Abstract: Perovskite piezoelectric ceramic has become one of the important materials for commercial sensors and semiconductor devices due to their high piezoelectric coefficient and good electromechanical coupling performance. Perovskite piezoelectric film is small in size, which is beneficial to the integration of complex circuit structure and has irreplaceable advantages in the manufacture of precision electronic components.
However, the decrease of macro size, the lattice mismatch between the interfaces and pore defects in the formation process limit the movement of domain walls, resulting in the low ferroelectric, piezoelectric and dielectric properties of the films. In recent years, researchers have been constantly adjusting the selection of substrates, exploring ways to improve the formation process of piezoelectric thin film, in order to optimize the electrical properties of piezoelectric thin film limited by structural characteristics.
The results show that (100), (110) and (111) are the grain orientations which can effectively improve the electrical properties of the films. At the same time, the columnar grain shape and large grain size can further ensure the piezoelectric films obtain good electrical properties. The shape and size of the grains depend on the thickness of the film to a great extent, so the increase of thin film thickness is beneficial to improving the electrical properties. In addition, the grain size is similar to the film thickness, both of which have a critical value. Below this value, the electrical response nearly disappears. The mismatch dislocation caused by the mismatch strain at the interface limits the movement of the domain, and the low dielectric constant layer reduces the electrostatic storage capacity of the film, which is an important factor leading to the decline of the electrical properties of the film. The pinning effect of holes increases the energy barrier for nucleation and growth of new domains, and inhibits the transition of piezoelectric thin films from tetragonal phase to rhombic phase. Therefore, although porosity decreases the piezoelectric coefficient (d33), the thermal stability of the films can be improved. In addition, it has been found that there is a positive correlation between the mechanical coupling properties and membrane porosity.
In this paper, the structure of piezoelectric ceramic film and the influence of stress caused by its structural characteristics on its performance are discussed. The effects of crystal structure, geometric structure and defects on the electrical properties of materials are described, and the mechanism of the influence of film microstructure on domain wall movement is analyzed. With the rapid development of intelligent manufacturing industry, piezoelectric ceramic film will inevitably develop in the direction of smaller size, more complex structural design, wider application range, more comprehensive functions and higher integration.
Key words:  piezoelectric film    grain orientation    size    lattice mismatch    defect
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TB34  
基金资助: 国家自然科学基金面上项目(51775554);国家自然科学基金重点项目(51535011);中央高校基金(HEUCF)
作者简介:  米庆博,2015年6月毕业于黑龙江工程学院,获得工学学士学位。现为哈尔滨工程大学腐蚀技术与表面科学研究所博士研究生,在王海斗教授的指导下进行研究。目前主要研究领域为钙钛矿陶瓷涂层喷涂成形。
王海斗,研究员,博士研究生导师,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任。2003年毕业于清华大学并获得博士学位。国家杰出青年科学基金获得者,现任国防973计划首席科学家。目前的研究领域包括表面工程、再制造和摩擦学。
引用本文:    
米庆博, 邢志国, 王海斗, 金国, 郭伟玲, 黄艳斐, 唐诗. 结构对钙钛矿压电薄膜电学性能影响的研究进展[J]. 材料导报, 2021, 35(15): 15065-15071.
MI Qingbo, XING Zhiguo, WANG Haidou, JIN Guo, GUO Weiling, HUANG Yanfei, TANG Shi. Influence of Structure on the Electrical Properties of Perovskite Piezoelectric Films: a Review. Materials Reports, 2021, 35(15): 15065-15071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100094  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15065
1 Kang M, Chi E,Halasyamani P S. Chemical Society Reviews,2006,35(8),710.
2 Zhang F X. Modern piezoelectricity, The Science Publishing Company, China,2001(in Chinese).
张福学.现代压电学 中册,科学出版社,2001.
3 Wang Y X, Zhong W L, Wang C L. Ferroelectrics,2001,259(1),127.
4 Mazzalai A, Kratzer M, Matloub R, et al. In: MRS 2014 Spring Meeting-Symposium J-Physics of Oxide Thin Films and Heterostructures.San Francisco,America,2014,pp. 1674.
5 Haertling G H. Journal of the American Ceramic Society,1999,82(4),797.
6 Panda P K, Sahoo B. Ferroelectrics,2015,474(1),128.
7 Patrick C W, Kowalski B R. Analytical Chemistry,1986,58(14),3077.
8 Torah R N, Beeby S P, White N M. Journal of Physics D Applied Phy-sics,2004,37(7),1074.
9 Zhu W, Yao K, Zhang Z. Sensors & Actuators A(Physical),2000,86(3),149.
10 Shiosaki T, Yamamoto T, Oda T, et al. Applied Physics Letters,1980,36(8),643.
11 Wacogne B, Roe M P, Pattinson T J, et al. Applied Physics Letters,1995,67(12),1674.
12 Verardi P, Craciun F, Dinescu M, et al. Thin Solid Films,1998,318(1-2),265.
13 Vasco E, Vázquez L, Zaldo C. Applied Physics A,1999,69,S827.
14 Yu L Y, Wang Y, Yao G H. Advanced Materials Research,2012,538-541,162.
15 Kok S L, Lau K T, Ahsan Q. Advanced Materials Research,2014,895,204.
16 Surowiak Z, Margolin A M, Zakharchenko I N, et al. Thin Solid Films,1989,176(2),227.
17 Park C S, Lee J W, Lee S M, et al. Journal of Electroceramics,2010,25(1),20.
18 Tadashi T, Hajime N. Ferroelectrics,2006,336(1),119.
19 Kiselev D A, Zhukov R N, Ksenich S V, et al. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques,2016,10(4),742.
20 Damjanovic D, Taylor D V, Setter N. MRS Online Proceeding Library Archive,1999,596,529.
21 Li P, Zhai J, Zeng H, et al. Journal of the European Ceramic Society,2016,36(13),3139.
22 Oikawa T, Aratani M, Funakubo H, et al. Journal of Applied Physics,2004,95(6),3111.
23 Taylor D V, Damjanovic D. Applied Physics Letters,2000,76(12),1615.
24 Yoon K H, Shin H C, Park J, et al. Journal of Applied Physics,2002,92(4),2108.
25 Rodrigues S A S, Silva J P B, Khodorov A, et al. Materials Science & Engineering B,2013,178(18),1224.
26 Rhun G L, Poullain G, Bouregba R, et al. Journal of the European Ceramic Society,2005,25(12),2281.
27 Nguyen M D, Houwman E P, Yuan H, et al. ACS Applied Materials & Interfaces,2017,9(41),35947.
28 Nguyen M D, Houwman E P, Dekkers M, et al. ACS Applied Materials & Interfaces,2017,9(11),9849.
29 Shin J C, Hong J W, Lee J M, et al. Japanese Journal of Applied Physics,1998,37(9),5123.
30 Kamel T M, With G D. Journal of the European Ceramic Society,2008,28(4),851.
31 Choudhury S, Li Y L, Iii C K, et al. Acta Materialia,2007,55(4),1415.
32 Sakaki C, Newalkar B L, Komarneni S, et al. Japanese Journal of Applied Physics,2001,40(12),6907.
33 Feng Y, Peng B, Chan H L W, et al. Thin Solid Films,2002,406(1-2),282.
34 Qiao L, Bi X. Journal of the European Ceramic Society,2009,29(10),1995.
35 Acharya S K, Kim T M, Hyung J H, et al. Journal of Alloys & Compounds,2014,586,549.
36 Randall C A, Kim N, Kucera J P, et al. Journal of the American Ceramic Society,1998,81(3),677.
37 Park C S, Lee J W, Park G T, et al. Journal of Materials Research,2007,22(5),1367.
38 Zhu Z X, Ruangchalermwong C, Li J F. Journal of Applied Physics,2008,104(5),0541071.
39 Lian L, Sottos N R. Journal of Applied Physics,2000,87(8),3941.
40 Foschini C R, Longo E, Varela J A, et al. Applied Physics Letters,1999,75(4),552.
41 Zhu T J, Lu L, Lai M O. Materials Science and Engineering: B,2007,138(1),51.
42 Sengupta S S, Park S M, Payne D A, et al. Journal of Applied Physics,1998,83(4),2291.
43 Tuttle B A, Voigt J A, Garino T J, et al. In: Eighth IEEE International Symposium on Applications of Ferroelectrics. Greenville,Columbia,1992,pp. 344.
44 Pintilie L, Vrejoiu I, Hesse D, et al. Physical Review B,2007,75(22),224113.
45 Zheng X, Li J, Zhou Y. Acta Materialia,2004,52(11),3313.
46 Doan T M, Lu L, Lai M O. Journal of Physics D Applied Physics,2010,43(3),035402.
47 Bastani Y, Thorsten S K, Andreas R, et al. Journal of Applied Physics,2011,109(1),014115.
48 Madsen L D, Griswold E M, Weaver L. Journal of Materials Research,1997,12(10),2612.
49 Gregg J M. Physica Status Solidi A,2009,206(4),577.
50 Rios S, Scott J F, Lookman A, et al. Journal of Applied Physics,2006,99(2),024107.
51 Yeo H G, Trolier-McKinstry S. Journal of Applied Physics,2014,116(1),014105.
52 Foster C M, Bai G R, Csencsits R, et al. Journal of Applied Physics,1997,81(5),2349.
53 Kim T, Srinivasan S, Kingon A I. MRS Online Proceeding Library Archive, DOI:10.1557/PROC-0902-T02-05.
54 Gong Y Q, Huang R J, Li X J, et al. Applied Mechanics & Materials,2013,291-294,2636.
55 He J M, Xie C, Ma T F. Materials Research Express,2018,5(1),015707.
56 Warren W L, Dimos D, Tuttle B A, et al. Journal of Applied Physics,1995,77(12),6695.
57 Tagantsev A K, Stolichnov I, Colla E L, et al. Journal of Applied Phy-sics,2001,90(3),1387.
58 Bowen L J, Shrout T, Schulze W A, et al. Ferroelectrics,1980,27(1),59.
59 Baudry H. Microelectronics International,1987,4(3),71.
60 Yang A K, Wang C A, Guo R, et al. Journal of the American Ceramic Society,2010,93(5),1427.
61 Srinivasan G, Petrov V M, Laletsin U. In: Aps March Meeting. Denver, America,2007, DOI: 10.1063/1.1381542.
62 Lyckfeldt O, Ferreirab J M F. Journal of the European Ceramic Society,1998,18(2),131.
63 Zeng T, Dong X, Mao C, et al. Journal of the European Ceramic Society,2007,27(4),2025.
64 Ohya Y, Yahata Y, Ban T. Journal of Sol-Gel Science and Technology,2007,42(3),397.
65 Yao K, He X, Xu Y, et al. Sensors & Actuators A,2005,118(2),342.
66 Bowen C R, Perry A, Lewis A C F, et al. Journal of the European Ceramic Society,2004,24(2),541.
67 Guo R, Wang C, Yang A, et al. Journal of Applied Physics,2010,108(12),124112.
68 Zhang H, Jiang S, Kajiyoshi K. Journal of the American Ceramic Society,2010,93(7),1957.
69 Reddy V A, Pathak N P, Nath R. Current Applied Physics,2012,12(2),451.
70 Lee B Y, Kim J, Kim H, et al. Sensors & Actuators A Physical,2016,240,103.
71 Suzuki N, Osada M, Billah M, et al. Journal of Visualized Experiments Jove,2018(133),57441.
[1] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[2] 李丹, 李书良, 柴玉琨, 刘健, 林震霞. 燃料包壳管超声波幅与缺陷深度对应关系[J]. 材料导报, 2021, 35(Z1): 473-475.
[3] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[4] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[5] 赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
[6] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[7] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[8] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[9] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[10] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[11] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[12] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[13] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[14] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[15] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed