Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15056-15064    https://doi.org/10.11896/cldb.20060089
  无机非金属及其复合材料 |
磁性传感材料与器件研究进展
门阔1,2,3, 赵鸿滨1,2,3, 魏峰1,2,3, 魏千惠1,2,3
1 有研科技集团智能传感功能材料国家重点实验室,北京 100088
2 有研工程技术研究院有限公司,北京 101402
3 北京有色金属研究总院,北京 100088
Research Progress of Magnetic Sensing Materials and Devices
MEN Kuo1,2,3, ZHAO Hongbin1,2,3, WEI Feng1,2,3, WEI Qianhui1,2,3
1 State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
2 GRIMAT Engineering Institute Co., Ltd., Beijing 101402, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
下载:  全 文 ( PDF ) ( 5533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁性材料是一种既古老又新颖的功能材料,磁性材料本身具有诸多特殊性质,正是基于此类特性,磁性材料可以完成外界物理量与磁信号之间的相互转换,由此制成各种类型的磁性传感器。随着传感器向着智能化、微型化、多功能化、高灵敏度、低功耗、高可靠性发展,新型磁性传感器种类也迅速增加,应用场景愈加广阔。
然而,由于人类对磁信号的探测及处理远不如电学信号成熟,磁性传感器的应用仍有诸多问题尚未解决。材料的研究者们更关注新磁学现象,而能成功应用于传感器的磁性材料除了其特有的磁敏特性外,还应根据其具体应用场景提高它的其他物理性能,而传感器的研究者们在解决传感器微型化、高灵敏度等问题时并不会优先从材料角度考虑问题,导致某一类磁性材料从发现到其成熟应用于传感器所经历的周期过长,而很多已发现的磁性材料并未找到合适的应用场景。
从材料角度而言,目前在传感器领域应用最多的是磁电阻材料,其广泛应用于位移传感器、角速度传感器、硬盘磁头、非接触电流测量等领域。其他研究较成熟的磁性材料如软磁材料、磁致伸缩材料、磁电复合材料、磁流体材料等在传感器领域也有一定的应用,如力学传感器、生物传感器、光学传感器等。为了使磁性传感器有广泛的应用,磁性材料及磁性传感器的研究者们应从应用角度出发,根据不同应用场景,提出更为全面具体的材料性能要求,以此为目标,对现有的磁性材料进行改性处理,或研发新型磁性材料,加快磁性材料及磁性传感器领域的发展。
本文综述了多种磁性材料(包括磁电阻材料、高磁导率软磁材料、巨磁阻抗材料、磁致伸缩材料、磁光材料、磁电复合材料、磁流体材料等)在磁场探测、光学传感、力学传感、生物传感、电流传感等方面的应用以及研究进展,并从应用的角度出发,展望了未来磁性材料及磁性传感器的发展前景,以期为新型磁性传感器的制造及应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
门阔
赵鸿滨
魏峰
魏千惠
关键词:  磁性传感器  磁电阻材料  磁通门传感器  巨磁阻抗材料  磁光材料  磁致伸缩材料  磁电复合材料  磁流体    
Abstract: As an ancient but novel functional material, magnetic materials have many unique properties. It is just because of these characteristics that they can realize the conversion between the external physical signals and magnetic signals, and thereby are fabricated into various types of magnetic sensors. With the development of sensors towards intelligence, miniaturization, multi-function, high sensitivity, low power consumption, and high reliability, new types of magnetic sensors are increasingly coming out for broad applications.
However, the detection and processing of magnetic signals are farfrom mature compared with that of electrical signals. So there are still many issues that need to be addressed for magnetic sensors. Although the magnetic materials might have intrinsic magnetic sensitivity properties, the physical properties of them should be adjusted to their specific application environment. Besides, researchers should pay more attention to the choice and manufacturing of materials in overcoming the problems of miniaturization and high sensitivity. In a historical sense, the magnetic materials have been discovered for a long time, but they have not found suitable applications due to the above mentioned issues.
Currently, the most widely used sensors are based on magnetoresistance materials, which can be made into displacement sensors, angular velocity sensors, hard disk heads, non-contact current measurer and etc. Other mature magnetic materials, such as soft magnetic materials, magnetostrictive materials, magnetoelectric composite materials, and magnetic fluid materials, find more applications as mechanical sensors, biological sensors and optical sensors. In order to extend their applications, the material modification should be taken into account.
This article reviews a variety of magnetic materials, including magnetoresistance materials, high permeability soft magnetic materials, giant magnetic impedance materials, magnetostrictive materials, magneto-optical materials, magnetoelectric composite materials, magnetic fluid materials,and etc. Their applications in magnetic field detection, optical sensing, mechanical sensing, biological sensing, current sensing, are also covered. Finally, we prospect the development of magnetic materials and magnetic sensors in the future.
Key words:  magnetic sensor    magnetoresistance materials    fluxgate sensor    giant magnetic impedance materials    magneto-optical materials    magnetostrictive materials    magnetoelectric composite materials    magnetic fluid materials
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TM27  
作者简介:  门阔,工程师,2012年毕业于中南大学冶金工程专业,获学士学位;2015年毕业于北京有色金属研究总院材料科学与工程专业,获硕士学位;自2015年起,在北京有色金属研究总院从事科研工作。目前为有研科技集团智能传感功能材料国家重点实验室工程师,主要从事磁性功能薄膜及MEMS磁性传感器方面的研究。
引用本文:    
门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
MEN Kuo, ZHAO Hongbin, WEI Feng, WEI Qianhui. Research Progress of Magnetic Sensing Materials and Devices. Materials Reports, 2021, 35(15): 15056-15064.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060089  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15056
1 White Paper on China’s Sensor Industry Development, Institute of Electronic Science and Technology Information,Ministry of Industry and Information Technology, China,2014,pp.1(in Chinese).
中国传感器产业发展白皮书,工业和信息化部电子科学技术情报研究所,2014.pp.1.
2 Baibich M N, Broto J M, Fert A F, et al. Physical Review Letters,1988,61(21),2472.
3 Dieny B, Speriosu V S, Parkin S S P, et al. Physical Review B,1991,43(1),1297.
4 Julliere M. Physics Letters A,1975,54(3),225
5 Miyazaki T, Tezuka N. Journal of Magnetism and Magnetic Materials,1995,139(3),231.
6 Wecker J, Holzapfel B, Schultz L, et al. Physical Review Letters,1993,71(14),2331.
7 Lv H, Liu M F, Cao J W, et al. Journal of Magnetic Materials and Devices,2012,43(3),1(in Chinese).
吕华,刘明峰,曹江伟,等.磁性材料及器件,2012,43(3),1.
8 Yan B Q. A dissertation submitted in partial fulfillment of the requirements for the degree of master of engineering. Master’s Thesis, Huazhong University of Science and Technology, China,2017(in Chinese)
颜百千.电场调控磁阻传感器的微磁学仿真与实验研究.硕士学位论文,华中科技大学,2017.
9 Sun X, Lei C, Guo L, et al. Sensors & Actuators,2016,b234,485.
10 Liu Q S. Biomolecule detection based on giant magnetoresistance (GMR) biosensor. Master’s Thesis, Shanghai Jiaotong University, China,2012(in Chinese).
刘庆胜.基于巨磁电阻(GMR)传感器的生物分子检测.硕士学位论文,上海交通大学,2012.
11 Xu J, Li Q, Zong W, et al. Journal of Magnetism and Magnetic Mate-rials,2016,417,25.
12 Klein T, Wang W, Yu L, et al. Biosensors & Bioelectronics,2019,126,301.
13 Wu K, Klein T, Krishna V D, et al. ACS Sensors,2017,7b,432.
14 Choi J, Gani A W, Bechstein D J B, et al. Biosensors & Bioelectronics,2016,85,1.
15 Fernández E, Kurlyandskaya G V, A García-Arribas, et al. Nanoscale Research Letters,2012,7(1),230.
16 Kim J, Le M, Park J, et al. Journal of Mechanical Science and Technology,2018,32(2),623.
17 Wang L, Hu Z, Zhu Y, et al. ACS Applied Materials & Interfaces,2020,12(7),8855.
18 Yasuhiro, Shirai, Kenzo, et al. International Heart Journal,2018,60(1),50.
19 Dezuari O, Belloy E, Gilbert S E. IEEE Transactions on Magnetics,35(4),2111.
20 Kejík P, Chiesi L, Janossy B, et al. Sensors and Actuators A: Physical,2000,81(1-3),180.
21 Robertson P A. Electronics Letters,2000,36(4),331.
22 Seitz T. Sensors and Actuators A: Physical,1989,22(1-3),799.
23 Liakopoulos T M, Ahn C H. Sensors and Actuators A: Physical,1999,77(1),66.
24 Wang D H, Chen W P, You Y X. In: 6th Sensors and Transducers Conference of China. Beijing, China,1999(in Chinese).
王东红,陈伟平,游余新.第六届全国敏感元件与传感器学术会议.北京,1999.
25 Choi S O, Kawahito S, Matsumoto Y, et al. Sensors and Actuators A: Physical,1996,55(2-3),121.
26 Ripka P, Janosek M. IEEE Sensors Journal,2010,10(6),1108.
27 Yang S L. Study on key techniques of the flexible substrate fluxgate sensor based on MEMS technology. Ph.D. Thesis, Northwestern Polytechnical University, China,2016(in Chinese).
杨尚林.基于MEMS工艺的柔性基底磁通门传感器关键技术研究.博士学位论文,西北工业大学,2016.
28 Yang X H, Zhou Y, Lei C. Journal of Magnetic Materials and Devices,2012(1),41(in Chinese).
杨晓虎,周勇,雷冲.磁性材料及器件,2012(1),41.
29 Lv H, Liu S. Journal of Nanoscience and Nanotechnology,2016,16(3),2663.
30 Sun X C, Yang Z, Lei C, et al. Sensors & Actuators B Chemical,2015,221,985.
31 Lei J, Lei C, Wang T, et al. Biomedical Microdevices,2014,16(2),237.
32 Mohri K, Kohsawa T, Kawashima K, et al. IEEE Transactions on Magnetics,1992,28(5),3150.
33 Phan M H, Peng H X. Progress in Materials Science,2008,53(2),323.
34 Zhukov A, Ipatov M, Churyukanova M, et al. Journal of Alloys & Compounds,2017,119(8),727.
35 Nabias J, Asfour A, Yonnet J P, et al. IEEE Transactions on Magnetics,2017,53(4),1.
36 Nabias J, Asfour A, Yonnet J P. Sensors,2017,17(3),640.
37 Zhukov A, Ipatov M, Zhukova V. In: 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves & Optics. Nanjing,2016,pp.7746423.
38 Peng H X, Qin F X, Phan M H, et al. Ferromagnetic Microwire Compo-sites,2016,8,99.
39 Uchiyama T, Mohri K, Nakayama S. Sensor Letters,2013,11(1),191.
40 Tajima S, Uchiyama T, Okuda Y, et al. In: 2013 Seventh International Conference on Sensing Technology (ICST). Wellington,2013,pp.6727656.
41 Wang K, Tajima S, Asano Y, et al. International Journal on Smart Sensing and Intelligent Systems,2020,7(5),1.
42 Fodil K, Denoual M, Dolabdjian C, et al. IEEE Transactions on Magne-tics,2013,49(1),93.
43 Fisher B, Panina L V, Fry N, et al. IEEE Transactions on Magnetics,2013,49(1),89.
44 Beato J, Vargas G, Pérez J I, et al. Sensors and Actuators A: Physical,2018,269,269.
45 Sepúlveda B, González J B, García A, et al. Physical Review Letters,2010,104(14),147401.
46 Gonzalez J B, Sepúlveda B, García A, et al. Applied Physical Letters,2010,97(4),043114.1.
47 Didosyan Y S, Hauser H, Nicolics J. Sensors and Actuators A: Physical,2000,81(1-3),263.
48 Didosyan Y S, Hauser H, Nicolics J, et al. IEEE Transactions on Instrumentation and Measurement,2000,49(1),14.
49 Song J, Mclaren P G, Thomson D J, et al. IEEE Transactions on Power Delivery,1995,10(4),1764.
50 Yi B, Chu B C B, Chiang K S. Measurement Science and Technology,2002,13(7),61.
51 Belotelov V I, Akimov I A, Pohl M, et al. Nature Nanotechnology,2011,6(6),370.
52 Maccaferri N, Berger A, Bonetti S, et al. Physical Review Letters,2013,111(16),167401.1.
53 Diaz B F, Mejía J R, Oliveira O N, et al. ACS Omega,2017,2(11),7682.
54 Chen L Y, Tang Z X, Gao J L, et al. Chinese Physics B,2016,25(11),204.
55 Ignatyeva D O, Knyazev G A, Kapralov P O, et al. Scientific Reports,2016,6,28077.
56 Kwun H, Teller C M, et al. Materials Evaluation,1994,52(4),503.
57 Kwun H, Light G M, Kim S Y, et al. Proceedings of the SPIE,2002,4702,282.
58 Kwun H, Bartels K A. Ultrasonics,1998,36,171.
59 Yariv A, Winsor H V. Optics Letters,1980,5(3),87.
60 Sedlar M, Matejec V, Paulicka I. Sensors and Actuators A: Physical,2000,84(3),297.
61 Dandridge A, Tveten A B, Sigel G H, et al. Electronics Letters,1980,16(11),408.
62 Lyu F J. Study on magnetostrictive TbDyFe-FeNi multilayers and properties of the structure of TbDyFe-FeNi multilayers/optic-fiber. Master’s Thesis, National University of Defense Technology, China,2004(in Chinese).
吕凤军.TbDyFe-FeNi多层膜及其与光纤复合结构的制备和磁敏性能研究.硕士学位论文,国防科学技术大学,2004.
63 Schukar V, Köppe E, Hofmann D, et al. Procedia Engineering,2016,168,1270.
64 Dai Y, Yang M, Xu G, et al. Optics Express,2013,21(14),17386.
65 Wu S, Cai Q, Grimes C A. Sensor Letters,2006,4(2),160.
66 Li S, Orona L, Li Z, et al. Applied Physics Letters,2006,88(7),073507.
67 Li S, Cheng Z Y. Journal of Applied Physics,2010,107(11),114514.1.
68 Fu L. Development of phage/antibody immobilized magnetostrictive biosensors. Ph.D. Thesis, Auburn University, USA,2010.
69 Fu L, Li S, Zhang K, et al. Sensors,2007,7(11),2929.
70 Zhang K, Zhang L, Fu L, et al. Sensors and Actuators A: Physical,2013,200,2.
71 Chang H C, Liao S C, Hsieh H S, et al. Sensors and Actuators A: Physical,2015,238,25.
72 Ye M, Vanderbilt D. Physical Review B,2015,92(3),035107.
73 Das H, Wysocki A L, Geng Y, et al. Nature Communications,2014,5,2998.
74 Kitagawa Y, Hiraoka Y, Honda T, et al. Nature Materials,2010,9(10),797.
75 Cheng Y, Peng B, Hu Z, et al. Physics Letters A,2018,382(41),3018.
76 Nan C W. Scientia Sinica (Technologica),2015(4),339(in Chinese).
南策文.中国科学:技术科学,2015(4),339.
77 Gao X S, Zeng M, Liu J M. Physics,2014,43(4),246(in Chinese).
高兴森,曾敏,刘俊明.物理,2014,43(4),246.
78 Wang Y, Gray D, Berry D, et al. Advanced Materials,2011,23(35),4111.
79 Fang C, Jiao J, Ma J, et al. Journal of Physics D Applied Physics,2015,48(46),465002.
80 Gun Lee D, Man Kim S, Kyung Yoo Y, et al. Applied Physics Letters,2012,101(18),1.
81 Annapureddy V, Palneedi H, Yoon W H, et al. Sensors and Actuators A: Physical,2017,4,017.
82 Nan T, Hui Y, Rinaldi M, et al. Scientific Reports,2013,3,1985.
83 Li M, Dong C, Zhou H, et al. IEEE Sensors Letters,2017,1(6),1.
84 Lage E, Kirchhof C, Hrkac V. Nature Materials,2012,11(6),523.
85 Hayes P, Klug M J, Toxvrd S, et al. Scientific Reports,2019,9(1),1.
86 Fetisov L Y, Serov V N, Chashin D V, et al. Journal of Applied Physics,2017,121(15),154503.
87 Fetisov L Y, Baraban I A, Fetisov Y K, et al. Journal of Magnetism & Magnetic Materials,2017,441,628.
88 Reis S, Silva M P, Castro N. Smart Materials & Structures,2016,25(5),055050.
89 Chlaihawi A A, Emamian S, Narakathu B B, et al. Sensors and Actuators A: Physical,2017,268,1.
90 Long Y, Qiu J, He X. Aip Advances,2017,7(12),125029.
91 He X, Qiu J, Long Y, et al. Ceramics International,2018,44,S100.
92 Lu C, Li P, Wen Y, et al. IEEE Transactions on Magnetics,2014,50(11),1.
93 Zhang S, Leung C M, Kuang W, et al. Journal of Applied Physics,2013,113(17),17C733.
94 Yu X J, Lou G F, Chen H G, et al. IEEE Sensors Journal,2015,15(10),5839.
95 Le M Q, Belhora F, Cornogolub A, et al. Journal of Applied Physics,2014,115(19),194103.1.
96 Laughlin D R. U.S. patent,5067351,1991.
97 Laughlin D R. U.S. patent,6173611,2001.
98 Idogaki T. U.S. patent,4922753,1990.
99 Idogaki T. U.S. patent,4984463,1991.
100 Baglio S, Barrera P, Savalli N. In: 2007 Instrumentation & Measurement Technology Conference. Warsaw,2007,pp.235526.
101 Chen Y, Han Q, Liu T, et al. Optics Letters,2013,38(20),3999.
102 Zu P, Chan C C, Lew W S, et al. IEEE Photonics Journal,2012,4(2),491.
103 Zu P, Chan C C, Jin Y, et al. In: 21st International Conference on Optical Fiber Sensors. Ottawa,2011,pp.7753.
104 Zu P, Chan C C, Koh G W, et al. Sensors and Actuators,2014,B191,19.
105 Zhao Y, Lv R Q, Ying Y, et al. Optics & Laser Technology,2012,44(4),899.
106 Luo L, Pu S, Tang J, et al. Applied Physics Letters,2015,106(19),193507.
107 Zheng Y, Dong X, Chan C C, et al. Optics Communications,2015,336,5.
108 Hu T, Zhao Y, Li X, et al. Chinese Optics Letters,2010,8(4),392.
109 Li L, Han Q, Liu T, et al. Review of Scientific Instruments,2014,85(8),1.
110 Li L, Han Q, Chen Y, et al. IEEE Sensors Journal,2014,14(6),1749.
[1] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[2] 李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed