Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 1-7    https://doi.org/10.11896/j.issn.1005-023X.2017.02.001
  研究快报 |
近红外荧光磁性复合载药脂质体的制备及应用*
李珍珍, 张其翼, 黄华莹, 任长靖, 赵强
四川大学化工学院, 成都 610065;
Preparation and Application of Near-infrared Fluorescence Magnetic Doxorubicin-loading Liposomes
LI Zhenzhen, ZHANG Qiyi, HUANG Huaying, REN Changjing, ZHAO Qiang
College of Chemical Engineering, Sichuan University, Chengdu 610065;
下载:  全 文 ( PDF ) ( 1889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拟建立以近红外荧光磁性复合脂质体(NFMSLs)为模型药物载体、盐酸多柔比星(DOX)为包封药物的药物输送系统,研究了近红外荧光磁性载药复合脂质体(DOX-NFMSLs)的制备、性质及初步应用。采用共沉淀法制备Fe3O4磁流体,CdTe掺杂Se制备近红外量子点CdSeTe,薄膜分散法制备DOX-NFMSLs。用DOX荧光分光光度法测定DOX-NFMSLs的包封率和体外药物释放率;用DOX-NFMSLs与HepG2肝癌细胞共孵育来进行细胞成像和细胞毒性实验。结果表明,近红外CdSeTe量子点粒径约为5 nm,闪锌矿结构,发射波长824 nm。磷脂与胆固醇质量比为8∶1,药脂比为1∶20 的DOX-NFMSLs平均粒径为252.9 nm,Zeta电位为-48.6 mV,理想释放药物温度为41 ℃,平均包封率为(74.84±0.89)%。DOX-NFMSLs对HepG2肝癌细胞有一定的抗癌效果。得到了具有良好磁响应、释药温度T=41 ℃、可近红外成像的载药脂质体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李珍珍
张其翼
黄华莹
任长靖
赵强
关键词:  近红外量子点CdSeTe  Fe3O4磁流体  复合脂质体  近红外成像  细胞毒性实验    
Abstract: The preparation, properties and preliminary application of near-infrared fluorescence magnetic doxorubicin-loading liposomes (DOX-NFMSLs) was studied, in which near-infrared fluorescence magnetic liposomes act as a model carrier, doxorubicin (DOX) as an entrapment drug. Fe3O4 magnetic fluid was prepared by using co-precipitation method. The near-infrared CdSeTe quantum dots (CdSeTe QDs) were prepared by incorporating selenium ions into CdTe nanocrystals. DOX-NFMSLs were prepared by the thin-film dispersion method. Fluorescence spectrophotometry was used to examine the drug content, entrapment efficiency (EE%) and in vitro drug release of DOX-NMSLs. The killer activity of HepG2 cells and fluorescent imaging were detected by cytotoxicity test and cell imaging experiments. The CdSeTe QDs had a zinc-blende crystal structure with emission at 824 nm, and an average particle size of about 5 nm. The mean particle size of DOX-NFMSLs was 252.9 nm, the Zeta potential was -48.6 mV and they had near-infrared fluorescent emission (815 nm). The optimum recipe for preparation of DOX-NFMSLs was founded as: liposome/Chol ratio 8∶1 (m/m), DOX/liposome ratio 1∶20 (m/m), with which the product′s EE% was (74.84±0.89)%. The optimal temperature of DOX release in vitro was 41 ℃ for DOX-NFMSLs. DOX-NFMSLs had antitumor efficacy in vitro and could be real-time ima-ged by near-infrared fluorescent microscope (cut-off filter of 800 nm). The data showed that DOX-NFMSLs have suitable temperature of DOX release (T=41 ℃), good near-infrared fluorescence and magnetic property. After incubation with HepG2 cells, they realized near-infrared imaging and produced an anti-cancer effect. So DOX-NFMSLs open up new perspectives for near-infrared imaging and may aid in tumor detection as well as imaging-guided therapy.
Key words:  near-infrared CdSeTe QDs    Fe3O4 magnetic fluid    DOX-NFMSLs    near-infrared fluorescent imaging    cell cytotoxicity assay
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: *国家自然科学基金(20975072)
作者简介:  李珍珍:女,1987年生,博士研究生,主要研究方向为纳米医药材料 E-mail:853117253@qq.com 赵强:通讯作者,男,副教授,研究方向为纳米材料、生物材料 E-mail:zhaoqiang@scu.edu.cn
引用本文:    
李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
LI Zhenzhen, ZHANG Qiyi, HUANG Huaying, REN Changjing, ZHAO Qiang. Preparation and Application of Near-infrared Fluorescence Magnetic Doxorubicin-loading Liposomes. Materials Reports, 2017, 31(2): 1-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.001  或          http://www.mater-rep.com/CN/Y2017/V31/I2/1
1 Wu Cheng, Jin Hao. Advances in the doxorubicin hydrochloride research [J]. Hosp Pham,2007,27(5):658(in Chinese).
吴诚,靳浩.盐酸多柔比星制剂研究进展[J].中国医院药学杂志,2007,27(5):658.
2 Matyszewska D. Drug delivery systems in the transport of doxorubicin [J]. Surf Innovations,2014,2(4):201.
3 Chen M X, Lin S. Fabrication of DOX and CPT dual-drug loaded PLGA nanofibrous mats for cancer treatment [J]. J Controlled Release,2015,213:76.
4 Kang H Z, O′Donoghue M B. A liposome-based nanostructure for aptamer directed delivery [J]. Chem Commun,2010,46:249.
5 Talelli M,Barz M,Rijchen C J. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation [J]. Nano Today,2015,10:93.
6 Nguyen T X, Lin H. Recent advances in liposomes surface modification for oral drug delivery [J]. Nanomedicine,2016,11(9):1169.
7 Zikra A, Ayesha K, Muhammad S. Review on polymer/carbon nan-otube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: Preparation, properties, and significance [J]. Polym Plast Technol,2016,55(6):582.
8 Ding Angang, Xiong Ping. Recent advances in the study of thermosensitive liposome (TSL) [J]. Fudan University J Medical Science,2015,42(2):262(in Chinese).
丁昂昂,熊屛.热敏脂质体(TSL)的研究进展[J].复旦学报(医学版),2015,42(2):262.
9 Fei L K, Yap L P. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide [J]. Biomaterials,2014,35:4082.
10 Kang T, Gao X L, Hu Q Y. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas [J]. Biomaterials,2014,35:4319.
11 Grüll H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound [J]. J Controlled Release,2012,161:317.
12 Park S M, Kim M S, Park S. Novel temperature-triggered liposome with high stability:Formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU) [J]. J Controlled Release,2013,170:373.
13 Qiu D, An X Q. Controllable release from magnetoliposomes by magnetic stimulation and thermal stimulation [J]. Colloids Surf B: Biointerfaces,2013,104:326.
14 Faria M R, Cruz M M. Synthesis and characterization of magnetoliposomes for MRI contrast enhancement [J]. Int J Pharm,2013,446:183.
15 Koppolu B P, Smith S G, Ravindranathan S R. Controlling chitosan-based encapsulation for protein and vaccine delivery [J]. Biomate-rials,2014,35:4382.
16 Chelvi T P, Ralhan R. Designing of themosensitive liposome from natural lipids for multimodality cancer therapy [J]. Int J Hyperthermia,1995,11(5):685.
17 Nagesha D K, Plouffe B D. Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications [J]. J Appl Phys,2009,105(7):317.
18 Song C X, Zhong Y L. Peptide-conjugated fluorescent silicon nano-particles enabling simultaneous tracking and specific destruction of cancer cells [J]. Anal Chem,2015,87:6718.
19 Moulick A, Blazkova I, Milosavlijevic V. Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo [J]. Photoch Photobio,2015,91:417.
20 Ninomiya K, Yamashita T, Kawabata S. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer [J]. Ultrason Sonochem,2014,21:1482.
21 Hu R, Yong K, Roy I. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging [J]. Nanotechnology,2010,21:1.
22 Zacheo A, Quarta A, Zizzari A. One step preparation of quantum dot-embedded lipid nanovesicles by a microfluidic device [J]. RSC Adv,2015,5(119):98576.
23 Hu W Q, Fang M, Zhao H L. Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis [J]. Biomaterials,2014,35(13):4125.
24 Gui R J, An X Q. Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-Ⅱ CdTe/CdS core/shell quantum dots with near-infrared emission [J]. RSC Adv,2013,3(43):20959.
25 Zhang Y, Li Y, Yan X P. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids [J]. Anal Chem,2009,81:5001.
26 Chen W M, Tang X L. K+-induced in situ self-assembly of near-infrared luminescent membrane material armored with bigger Yb (iii) complex crystallites [J]. Chem Commun,2016,52(29):5124.
27 Xie R G, Peng X G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters [J]. J Am Chem Soc,2009,131:10645.
28 Gao J H, Chen K. In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots [J]. Bioconjugate Chem,2010,21:604.
29 Jiang W, Singhal A, Zheng J. Optimizing the synthesis of red-to near-IR-emitting CdS-capped CdTexSe1-x alloyed quantum dots for biomedical imaging [J]. Chem Mater,2006,18:4845.
30 Chen H Y, Wang Y Q, Xu J. Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model [J]. J Fluoresc,2008,18:801.
31 Tian B, Wafa′T A, Kostas K. The engineering of doxorubicin-loa-ded liposome-quantum dot hybrids for cancer theranostics[J]. Chinese Phys B,2014,23(8):087805.
32 Li Z Z, Li S, Sun L. Synthesis of multifunctional nanocomposites and their application in imaging and targeting tumor cells in vitro [J]. Artif Cells Nanomed Biotechnol,2016,44(5):1236.
33 Bartzatt R, Weidner E. Analysis for doxorubicin by spectrophotometry and reversed phase high performance liquid chromatography (HPLC) [J]. Anal Chem,2012,9:63.
34 Zhao Feng, Luan Hanseng, Luo Huafei. Determination of entrapment efficiency with SephadexG-50[J].Chin J Pharmaceuticals,2012,47(17):1385(in Chinese).
赵峰, 栾瀚森, 罗华菲.葡聚糖凝胶色谱法用于纳米粒包封率的测定[J].中国药学杂志,2012,47(17):1385.
35 Ding H. Luminescent carbon quantum dots and their application in cell imaging [J]. New J Chem,2013,37(8):2515.
36 Tian J N, Liu R J, Zhao Y C. Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid [J]. J Colloid Interface Sci,2009,336:504.
37 Pradhan P, Giri J, Rieken F. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy [J]. J Control Release,2010,142:108.
38 Chen Zhaohong, Liu Guiyang. Progress in targeting and releasing of magnetic thermosensitive liposomes [J]. Chin J Pharmacol Toxico,2012,26(2):247(in Chinese).
陈召红,刘皈阳.磁性热敏脂质体的研究进展 [J].中国药理学和病毒学杂志,2012,26(2):247.
[1] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[2] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[3] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[4] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[5] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[10] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[11] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[12] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[13] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[14] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[15] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed