Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21040168-7    https://doi.org/10.11896/cldb.21040168
  无机非金属及其复合材料 |
航空发动机涡轮叶片热障涂层研究进展
赵云松1, 张迈1,2, 戴建伟3, 郭会明4, 孙志军1,5, 郭媛媛1, 张剑1, 花银群6, 霍坤6, 戴峰泽6,*
1 中国航发北京航空材料研究院先进高温结构材料重点实验室,北京 100095
2 北京科技大学材料科学与工程学院,北京 100083
3 北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室,北京 100095
4 中国航发四川燃气涡轮研究院材料与工艺技术研究室,成都 610500
5 北京科技大学冶金与生态工程学院,北京 100083
6 江苏大学机械工程学院,江苏 镇江 212013
Research Progress of Thermal Barrier Coatings for Aeroengine Turbine Blades
ZHAO Yunsong1, ZHANG Mai1,2, DAI Jianwei3, GUO Huiming4, SUN Zhijun1,5, GUO Yuanyuan1, ZHANG Jian1, HUA Yinqun6, HUO Kun6, DAI Fengze6,*
1 Key Laboratory of Advanced High Temperature Structural Materials,AECC Beijing Institute of Aeronautical Materials, Beijing 100095,China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083,China
3 Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China
4 School of Materials and Processing Technology, AECC Sichuan Gas Turbine Establishment, Chengdu 610500,China
5 School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083,China
6 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
下载:  全 文 ( PDF ) ( 7731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 涡轮叶片的热障涂层技术是保障和提升航空发动机性能的关键技术之一,涡轮叶片的工作环境要求热障涂层需要具备隔热性能好、热膨胀系数与基材相匹配、抗氧化性能好、抗熔盐腐蚀性能好等一系列特点,这对热障涂层的材料、结构以及制备工艺提出了巨大的挑战,是当前航空发动机领域的热点研究之一。本文对构成热障涂层的金属粘结层和陶瓷层材料,以及热障涂层体系结构的研究现状做了详细介绍,并简要介绍了常用的热障涂层制备方法,展望了金属粘结层和陶瓷层材料体系和制备技术的发展趋势,以期为未来航空发动机涡轮叶片热障涂层体系的构建提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵云松
张迈
戴建伟
郭会明
孙志军
郭媛媛
张剑
花银群
霍坤
戴峰泽
关键词:  涡轮叶片  热障涂层体系  金属粘结层  陶瓷层    
Abstract: The thermal barrier coating (TBC)system of turbine blades is one of the key factors to ensure and improve the performance of aero-engines. The working environment of turbine blades requires TBCs to have good thermal insulation performance, thermal expansion coefficient matching the substrate, good oxidation resistance and molten salt corrosion resistance. These pose a great challenge to the TBC material, TBC system as well as the fabrication process. It is one of the most hot topics in this field. This paper introduces in detail the research status and the development trend of the metal bond coating and the ceramic coating materials, as well as the TBC system. The research progress of the TBCs' fabrication technology is also briefly introduced. The purpose is to provide a useful reference for the construction of the future aero-engine turbine blade TBC system.
Key words:  turbine blade    TBC system    metal bond coating    ceramic coating
发布日期:  2023-03-27
ZTFLH:  TG132.32  
  TG156.1  
基金资助: 国家自然科学基金(52001297;91860202)
通讯作者:  *戴峰泽,2014博士毕业于江苏大学机械工程学院,现为江苏大学机械工程学院副教授,主要从事激光冲击强化、激光微纳制造等方向的研究。发表SCI、EI检索论文30余篇。dfz@ujs.edu.cn   
作者简介:  赵云松,2017年博士毕业于北京科技大学。现为中国航发北京航空材料研究院高级工程师,主要研究方向为航空发动机涡轮叶片用镍基单晶高温合金的工程化应用。近5年来发表科研论文40余篇。
引用本文:    
赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
ZHAO Yunsong, ZHANG Mai, DAI Jianwei, GUO Huiming, SUN Zhijun, GUO Yuanyuan, ZHANG Jian, HUA Yinqun, HUO Kun, DAI Fengze. Research Progress of Thermal Barrier Coatings for Aeroengine Turbine Blades. Materials Reports, 2023, 37(6): 21040168-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040168  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21040168
1 Cao X Q. New materials and new structures of thermal barrier coatings, Beijing: Science Press, China, 2016 (in Chinese).
曹学强. 热障涂层新材料和新结构, 科学出版社, 2016.
2 Padture N P, Gell M, Jordan E H. Science, 2002, 296, 280.
3 Tsipas S A, Golosnoy I O. Journal of the European Ceramic Society, 2011, 31(15), 2923.
4 Wang L S, Cao G J, Tang G Z, et al. Journal of Aeronautical Materials, 2017, 37(2), 44 (in Chinese).
王令双. 曹国剑. 唐光泽. 等. 航空材料学报, 2017, 37(2), 44.
5 Wang Y Q, Song P, Ji Q, et al. Journal of Materials Engineering, 2017, 45(4), 65 (in Chinese).
王逸群, 宋鹏, 季强, 等. 材料工程, 2017, 45(4), 65.
6 Zakeri A, Bahmani E, Aghdam A S R, et al. Surface and Coatings Technology, 2020, 395, 125935.
7 Huang L, Sun X F, Guan H R, et al. Surface and Coatings Technology, 2006, 201(3/4), 1421.
8 Lu J, Chen Y, Zhang H, et al. Corrosion Science, 2020, 166, 108426.
9 Ebach-stahl A, Schulz U, Swadźba R, et al. Corrosion Science, 2021, 181, 109205.
10 Ghadami F, Aghdam A S R, Zakeri A, et al. Ceramics International, 2020, 46(4), 4556.
11 Fan X Z, Zhu L, Huang W Z. Journal of Alloys and Compounds, 2017, 729, 617.
12 Yu Z, Hass D D, Wadley H N G, Materials Science and Engineering: A, 2005, 394(1/2), 43.
13 Zhao C S, Luo L R, Lu J, et al. Surface and Coatings Technology, 2019, 360, 140.
14 Tolpygo V K, Clarke D R. Acta Materialia, 2000, 48(13), 3283.
15 Haynes J A, Unocic K A, Lance M J, et al. Oxidation of Metals, 2016, 86(5/6), 453.
16 Audigié P, Put A R V, Malié A, et al. Surface and Coatings Technology, 2014, 260, 9.
17 Zhao C S, Luo L R, Xiao C B, et al. Surface and Coatings Technology, 2018, 352, 49.
18 Jiang C Y, Li S, Liu H, et al. Corrosion Science, 2020, 166, 108424.
19 Chen H F, Zhang C, Xuan J H, et al. Ceramics International, 2020, 46(1), 813.
20 Tao X P, Wang X G, Zhou Y Z, et al. Surface and Coatings Technology, 2020, 389, 125640.
21 Tao X P, Wang X G, Zhou Y Z, et al. Materials Science and Engineering: A, 2020, 805, 140575.
22 Nicholls J R, Simms N J, Chan W Y, et al. Surface and Coatings Technology, 2002, 149(2/3), 236.
23 Mohammadi M, Kobayashi A, Javadpour S, et al. Vacuum, 2019, 167, 547.
24 Yao H R, Bao Z B, Shen M L, et al. Applied Surface Science, 2017, 407, 485.
25 Guo H M, Hong L, Mei J L, et al. Corrosion Science, 2020, 163, 108275.
26 Cai J, Yao Y M, Wei J Z, et al. Surface & Coatings Technology, 2021, 422, 127499.
27 Abdullah C K, Kadir M D, Bilal D, et al. Applied Surface Science, 2015, 354, 314.
28 Leoni M, Jones R L, Scardi P, Surface and Coatings Technology, 1998, 108, 107.
29 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2021, 47(5), 6875.
30 Matsumoto M, Aoyama K, Matsubara H, et al. Surface and Coatings Technology, 2005, 194(1), 31.
31 Liu Y, Gao Y F, Tao S Y, et al. Surface & Coatings Technology, 2009, 203(8), 1014.
32 Zhou S L, Shen S B, Fang X H, et al. Ceramics International, 2019, 45(16), 19910.
33 Kirubakaran A M K, Anderson A, Rajasekaramoorthy M, et al. Materials Today: Proceedings, 2020, 33(1), 954.
34 Lei J, Jiang C Z, Xu H Y, et al. International Journal of Lightweight Materials and Manufacture, 2019, 2(3), 261.
35 Song X M, Xu Y J, Ding Y, et al. Applied Surface Science, 2021, 542, 148553.
36 Daroonparvar M, Yajid M A M, Kay C M, et al. Corrosion Science, 2018, 144, 13.
37 Belichko D R, Konstantinova T E, Maletsky A V, et al. Ceramics International, 2021, 47(3), 3142.
38 Raghavan S, Mayo M J. Surface and Coatings Technology, 2002, 160(2/3), 187.
39 Habibi M H, Wang L, Liang J D, et al. Corrosion Science, 2013, 75, 409.
40 Chen P C, Cheng C W, Kao I C, et al. Advanced Powder Technology, 2016, 27(3), 877.
41 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2021, 47(5), 6875.
42 Chen D, Wang Q S, Liu Y B, et al. Surface & Coatings Technology, 2020, 403, 126387.
43 Kang J G, Hong K S, Yang H S. Current Applied Physics, 2013, 13(9), 1967.
44 Jesuraj S A, Kuppusami P, Dharini T, et al. Ceramics International, 2018, 44(15), 18164.
45 Doleker K M, Karaoglanli A C. Surface and Coatings Technology, 2017, 318, 198.
46 Lu X R, Hou C X, Xie Y, et al. Ceramics International, 2017, 43(3), 3015.
47 Zhao F A, Xiao H Y, Bai X M, et al. Journal of Alloys and Compounds, 2019, 776, 306.
48 Li M Z, Guo L, Ye F X. Ceramics International, 2016, 42(15), 16584.
49 Duan Q P, Yang S S, Zhang W Y, et al. Surface Technology, 2019, 48(1), 77.
50 Hu Q J, Zeng J S, Wang L, et al. Journal of Rare Earths, 2018, 36(4), 398.
51 Qi F, Fan Z S, Sun D B, et al. Journal of Materials Enginering, 2016(7), 14 (in Chinese).
齐峰, 樊自拴, 孙冬柏, 等. 材料工程, 2006(7), 14.
52 Sun J B, Niu L F, Hui Y, et al. Ceramics International, 2020, 46(18), 27967.
53 Sun J B, Wang J S, Hui Y, et al. Ceramics International, 2020, 46(4), 4174.
54 Sun J B, Hui Y, Jiang J N, et al. Applied Surface Science, 2020, 504, 144509.
55 Xue Z L, Guo H B, Gong S K, et al. Journal of Aeronautical Materials, 2018, 38(2), 10 (in Chinese).
薛召露, 郭洪波, 宫声凯, 等. 航空材料学报, 2018, 38(2), 10.
56 TsukadA S, Kuroda S, Nishijima M, et al. Surface and Coatings Technology, 2019, 363, 95.
57 Wu R F, Pan W, Ren X R, et al. Acta Materialia, 2012, 60(15), 5536.
58 Zhang H, Lu J, Shan X, et al. Journal of the European Ceramic Society, 2020, 40(12), 4101.
59 Butt S H, Rafique M S, Bashir S, et al. Ceramics International, 2019, 45(5), 5648.
60 Dayaghi A M, Haugsrud R, Stange M, et al. Solid State Ionics, 2021, 359, 115534.
61 Gong W P, Chen T F, Liu Y, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(4), 739.
62 Song D, Song T, Paik U, et al. Corrosion Science, 2020, 173, 108776.
63 Wang Y J, Ma X X, Ma R, et al. Ceramics International, 2021, 47(7), 9188.
64 Karaoglanli A C, Doleker K M, Ozgurluk Y. Materials Characterization, 2020, 159, 110072.
65 Fang H J, Wang W Z, Huang J B, et al. Corrosion Science, 2020, 173, 108764.
66 Li H J, Li Z X, Liu L, et al. Rare Metal Materials and Engineering, 2018, 47(8), 2435 (in Chinese).
李江涛, 李争显, 刘林涛, 等. 稀有金属材料与工程, 2018, 47(8), 2435.
67 Zhang D B, Liao K, Yu Y, et al. Ceramics International, 2020, 46(4), 4737.
68 Cao Y P, Ning X J, Wang Q S. Surface & Coatings Technology, 2021, 409, 126842.
69 Taleghani P R, Valefi Z, Ehsani N. Ceramics International, 2021, 47(7), 8915.
70 Wang L, Zhang C, Agarwal A, et al. International Journal of Refractory Metals & Hard Materials, 2020, 93, 105348.
71 Carpio P, Salvador M D, Borrell A, et al. Ceramics International, 2018, 44(11), 12634.
72 Carpio P, Salvador M D, Borrell A, et al. Ceramics International. 2017, 43(5), 4048.
73 Kirubaharan A M K, Kuppusami P, Priya R, et al. Corrosion Science, 2018, 135, 243.
74 Huang L L, Meng H M, Tang J, Journal of Materials Engineering, 2014(8), 105 (in Chinese).
黄亮亮, 孟惠民, 唐静. 材料工程, 2014(8), 105.
75 Rahmawati F, Zuhrini N, Nugrahaningtyas K D, et al. Journal of Materials Research and Technology, 2019, 8(5), 4425.
76 Kim D H, Bae K, Choi H J, et al. Journal of Alloys and Compounds, 2018, 769, 545.
[1] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[2] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed