Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 118-122    https://doi.org/10.11896/j.issn.1005-023X.2017.09.016
  材料综述 |
镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*
李亚峰, 刘林, 黄太文, 张军, 傅恒志
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Stray Grain Formation in the Platform of Ni-base Single Crystal Turbine Blades
LI Yafeng, LIU Lin, HUANG Taiwen, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
下载:  全 文 ( PDF ) ( 2213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金涡轮叶片缘板杂晶的出现严重影响叶片的力学性能,导致叶片报废。综述了关于缘板杂晶的形成本质的研究,总结了不同影响因素对缘板杂晶形成的影响及原因并概况了几种不同杂晶的控制方法,指出了以往研究中存在的问题,展望了未来研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚峰
刘林
黄太文
张军
傅恒志
关键词:  镍基单晶高温合金  涡轮叶片  杂晶  机理  影响因素  控制方法    
Abstract: Stray grains (SGs) in the platform region of the Ni-base single crystal turbine blades are deleterious to the mechanical properties in service, therefore the formation of SG may directly cause the rejection of the castings. This paper reviews the researches on the origin, mechanism and influencing factors of stray grain formation in the platform region. Several controlling techniques and their mechanism on SG control are also summarized. The current existing problem and future research aspects are stated and discussed as well.
Key words:  Ni-base single crystal superalloy    turbine blade    stray grain    mechanism    influencing factor    controlling technique
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TG132.3  
基金资助: *国家973项目(2011CB610406); 国家863项目(2012AA03A511); 国家自然科学基金(51171151; 51331005; 51501151); 陕西省自然科学基金(2014JM6227)
作者简介:  李亚峰:男,1986年生,博士研究生,主要从事单晶高温合金铸件缺陷研究 E-mail:yafeng1943@mail.nwpu.edu.cn
引用本文:    
李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
LI Yafeng, LIU Lin, HUANG Taiwen, ZHANG Jun, FU Hengzhi. Research Progress of Stray Grain Formation in the Platform of Ni-base Single Crystal Turbine Blades. Materials Reports, 2017, 31(9): 118-122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.016  或          http://www.mater-rep.com/CN/Y2017/V31/I9/118
[1] Hu Zhuangqi, Liu Lirong, et al.Development of the Ni-base single crystal superalloys[J]. Aeroengine,2005,31(3):1(in Chinese).胡壮麒,刘丽荣,等. 镍基单晶高温合金的发展[J].航空发动机,2005,31(3):1.
[2] Reed R C.The superalloys fundamental and applications[M]. Cambridge: Cambridge University Press,2006:1.
[3] Pollock T M, Tin S.Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties[J]. J Propul Power,2006,22(2):361.
[4] Seth B B.Superalloys—The utility gas turbine perspective[C]// Conference Record of the Superalloys 2000. Seven Springs,2000:3.
[5] Sims C T, Stoloff N S, Hagel W C.Superalloys Ⅱ[M]. New York: Wiley,1986:122.
[6] Meng X B, Li J G, Jin T, et al.Evolution of grain selection in spiral selector during directional solidification of nickel-base superalloys[J]. J Mater Sci Technol,2011,27(2):118.
[7] Aveson J W, Tennant P A, et al.On the origin of sliver defects in single crystal investment castings[J]. Acta Mater,2013,61:512.
[8] Meyer M, Dedecke D, Paul U, et al.Undercooling related casting defects in single crystal Ni-based superalloy[C]//Conference Record of the Superalloys 1996. Seven Springs,1996:471.
[9] Bussac A D, Gandin C A.Prediction of a process window for the investment casting of dendritic single crystals[J]. Mater Sci Eng A,1997,237:35.
[10] Stanford N, Souza N D.Seeding of single crystal superalloys-role of seed melt-back on casting defects[J]. Scr Mater,2004,50:159.
[11] Souza N D, Jenning P A, Yang X L, et al.Seeding of single-crystal superalloys-role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall Mater Trans B,2005,36:657.
[12] Yang X L, Ness D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mater Sci Eng A, 2005,413-414:571.
[13] Zhou Y Z.Formation of stray grains during directional solidification of a nickel-based superalloy[J]. Scr Mater,2011,65(4):281.
[14] Zhao X B, Liu L, et al.Analysis of competitive growth mechanism of stray grains of single crystal superalloys during directional solidification process[J]. Rare Metal Mater Eng,2011,40(1):9.
[15] Yang C B, Liu L, Zhao X B, et al.Formation of stray grains during directional solidification of a superalloy AM3[J]. Appl Phys A,2014,114(3):979.
[16] Yang X L, Dong H B, Wang W, et al.Microscale simulation of SG formation in investment cast turbine blades[J]. Mater Sci Eng A,2004,386:129.
[17] Meng X B, Li J G, Chen Z Q, et al.Effect of platform dimension on the dendrite growth and SG formation in a Ni-base single crystal superalloy[J]. Metall Mater Trans A,2013,44:1955.
[18] Zhang X L, Zhou Y Z, Jin T, et al.Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Me-tall Sinica,2012,48(10):1229(in Chinese).张小丽, 周亦胄, 金涛, 等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012,48(10):1229.
[19] Gao S F, Liu L, Zhang J, et al.Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 cas-ting[J]. China Foundry,2015,12(2):118.
[20] Li Y F, Liu L, Huang T W, et al.Multi-scale characterization of stray grain in the platform of Nickel-base single crystal turbine blade[J]. Vacuum,2006,131:181.
[21] Ma D X, Polaczck A B.Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall Mater Trans B,2009,40:738.
[22] Hideyuki Yasuda, Itsuo Ohnaka, et al.Direct observation of stray crystal formation in unidirectional solidification of Sn-Bi alloy by X-ray imaging[J]. J Cryst Growth, 2004,262:645.
[23] Kurz W, Giovanola B, Trivedi R.Theory of microstructural deve-lopment during rapid solidification[J]. Acta Metall,1986,34(5):823.
[24] Ma D X, Wu Q, Polaczek A B.Undercoolability of superalloys and solidification defects in single crystal components[J]. Adv Mater Res,2011,278:114.
[25] Zhang H Q, Zhang J, Li Y F, et al.Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. Foundry,2014,63(2):128(in Chinese).张宏琦,张军,李亚峰, 等. 一种第三代镍基单晶高温合金铸件截面突变处的杂晶形成过程[J]. 铸造,2014,63(2):128.
[26] Xuan W D, Ren Z M, Ren W L, et al.Effect of seed crystal orientation on the stray grain of directional solidified Ni-based superalloy[J]. J Iron Steel Res,2011,23(2):369(in Chinese).玄伟东, 任忠鸣, 任维丽, 等. 籽晶取向对镍基高温合金定向凝固过程中杂晶的影响[J]. 钢铁研究学报,2011,23(2):369.
[27] Xuan W D, Ren Z M, Li C J.Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification[J]. Metall Mater Trans A,2015,46:1461.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[3] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[4] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[5] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[6] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[7] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[8] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[9] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[10] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
[11] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[12] 吕兴栋, 王学斌, 李北星. 有机膦酸类化合物在混凝土工程中的应用及缓凝机理研究进展[J]. 材料导报, 2020, 34(15): 15184-15189.
[13] 李泽, 赵芳, 王建江, 高海涛. PVP表面修饰羰基铁/CoFe2O4核壳纳米结构的制备及低频吸波机理[J]. 材料导报, 2020, 34(14): 14027-14033.
[14] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[15] 胡明玉, 王红英, 刘子航, 胡裕倩. 抑霉菌泥炭藓/硅藻土复合调湿材料的研究[J]. 材料导报, 2020, 34(14): 14051-14056.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed