Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 118-122    https://doi.org/10.11896/j.issn.1005-023X.2017.09.016
  材料综述 |
镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*
李亚峰, 刘林, 黄太文, 张军, 傅恒志
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Stray Grain Formation in the Platform of Ni-base Single Crystal Turbine Blades
LI Yafeng, LIU Lin, HUANG Taiwen, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
下载:  全 文 ( PDF ) ( 2213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金涡轮叶片缘板杂晶的出现严重影响叶片的力学性能,导致叶片报废。综述了关于缘板杂晶的形成本质的研究,总结了不同影响因素对缘板杂晶形成的影响及原因并概况了几种不同杂晶的控制方法,指出了以往研究中存在的问题,展望了未来研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚峰
刘林
黄太文
张军
傅恒志
关键词:  镍基单晶高温合金  涡轮叶片  杂晶  机理  影响因素  控制方法    
Abstract: Stray grains (SGs) in the platform region of the Ni-base single crystal turbine blades are deleterious to the mechanical properties in service, therefore the formation of SG may directly cause the rejection of the castings. This paper reviews the researches on the origin, mechanism and influencing factors of stray grain formation in the platform region. Several controlling techniques and their mechanism on SG control are also summarized. The current existing problem and future research aspects are stated and discussed as well.
Key words:  Ni-base single crystal superalloy    turbine blade    stray grain    mechanism    influencing factor    controlling technique
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TG132.3  
基金资助: *国家973项目(2011CB610406); 国家863项目(2012AA03A511); 国家自然科学基金(51171151; 51331005; 51501151); 陕西省自然科学基金(2014JM6227)
作者简介:  李亚峰:男,1986年生,博士研究生,主要从事单晶高温合金铸件缺陷研究 E-mail:yafeng1943@mail.nwpu.edu.cn
引用本文:    
李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
LI Yafeng, LIU Lin, HUANG Taiwen, ZHANG Jun, FU Hengzhi. Research Progress of Stray Grain Formation in the Platform of Ni-base Single Crystal Turbine Blades. Materials Reports, 2017, 31(9): 118-122.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.016  或          https://www.mater-rep.com/CN/Y2017/V31/I9/118
[1] Hu Zhuangqi, Liu Lirong, et al.Development of the Ni-base single crystal superalloys[J]. Aeroengine,2005,31(3):1(in Chinese).胡壮麒,刘丽荣,等. 镍基单晶高温合金的发展[J].航空发动机,2005,31(3):1.
[2] Reed R C.The superalloys fundamental and applications[M]. Cambridge: Cambridge University Press,2006:1.
[3] Pollock T M, Tin S.Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties[J]. J Propul Power,2006,22(2):361.
[4] Seth B B.Superalloys—The utility gas turbine perspective[C]// Conference Record of the Superalloys 2000. Seven Springs,2000:3.
[5] Sims C T, Stoloff N S, Hagel W C.Superalloys Ⅱ[M]. New York: Wiley,1986:122.
[6] Meng X B, Li J G, Jin T, et al.Evolution of grain selection in spiral selector during directional solidification of nickel-base superalloys[J]. J Mater Sci Technol,2011,27(2):118.
[7] Aveson J W, Tennant P A, et al.On the origin of sliver defects in single crystal investment castings[J]. Acta Mater,2013,61:512.
[8] Meyer M, Dedecke D, Paul U, et al.Undercooling related casting defects in single crystal Ni-based superalloy[C]//Conference Record of the Superalloys 1996. Seven Springs,1996:471.
[9] Bussac A D, Gandin C A.Prediction of a process window for the investment casting of dendritic single crystals[J]. Mater Sci Eng A,1997,237:35.
[10] Stanford N, Souza N D.Seeding of single crystal superalloys-role of seed melt-back on casting defects[J]. Scr Mater,2004,50:159.
[11] Souza N D, Jenning P A, Yang X L, et al.Seeding of single-crystal superalloys-role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall Mater Trans B,2005,36:657.
[12] Yang X L, Ness D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mater Sci Eng A, 2005,413-414:571.
[13] Zhou Y Z.Formation of stray grains during directional solidification of a nickel-based superalloy[J]. Scr Mater,2011,65(4):281.
[14] Zhao X B, Liu L, et al.Analysis of competitive growth mechanism of stray grains of single crystal superalloys during directional solidification process[J]. Rare Metal Mater Eng,2011,40(1):9.
[15] Yang C B, Liu L, Zhao X B, et al.Formation of stray grains during directional solidification of a superalloy AM3[J]. Appl Phys A,2014,114(3):979.
[16] Yang X L, Dong H B, Wang W, et al.Microscale simulation of SG formation in investment cast turbine blades[J]. Mater Sci Eng A,2004,386:129.
[17] Meng X B, Li J G, Chen Z Q, et al.Effect of platform dimension on the dendrite growth and SG formation in a Ni-base single crystal superalloy[J]. Metall Mater Trans A,2013,44:1955.
[18] Zhang X L, Zhou Y Z, Jin T, et al.Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Me-tall Sinica,2012,48(10):1229(in Chinese).张小丽, 周亦胄, 金涛, 等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012,48(10):1229.
[19] Gao S F, Liu L, Zhang J, et al.Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 cas-ting[J]. China Foundry,2015,12(2):118.
[20] Li Y F, Liu L, Huang T W, et al.Multi-scale characterization of stray grain in the platform of Nickel-base single crystal turbine blade[J]. Vacuum,2006,131:181.
[21] Ma D X, Polaczck A B.Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall Mater Trans B,2009,40:738.
[22] Hideyuki Yasuda, Itsuo Ohnaka, et al.Direct observation of stray crystal formation in unidirectional solidification of Sn-Bi alloy by X-ray imaging[J]. J Cryst Growth, 2004,262:645.
[23] Kurz W, Giovanola B, Trivedi R.Theory of microstructural deve-lopment during rapid solidification[J]. Acta Metall,1986,34(5):823.
[24] Ma D X, Wu Q, Polaczek A B.Undercoolability of superalloys and solidification defects in single crystal components[J]. Adv Mater Res,2011,278:114.
[25] Zhang H Q, Zhang J, Li Y F, et al.Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. Foundry,2014,63(2):128(in Chinese).张宏琦,张军,李亚峰, 等. 一种第三代镍基单晶高温合金铸件截面突变处的杂晶形成过程[J]. 铸造,2014,63(2):128.
[26] Xuan W D, Ren Z M, Ren W L, et al.Effect of seed crystal orientation on the stray grain of directional solidified Ni-based superalloy[J]. J Iron Steel Res,2011,23(2):369(in Chinese).玄伟东, 任忠鸣, 任维丽, 等. 籽晶取向对镍基高温合金定向凝固过程中杂晶的影响[J]. 钢铁研究学报,2011,23(2):369.
[27] Xuan W D, Ren Z M, Li C J.Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification[J]. Metall Mater Trans A,2015,46:1461.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[6] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[7] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[8] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[9] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[10] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[11] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[12] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[13] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[14] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[15] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed