Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 123-127    https://doi.org/10.11896/j.issn.1005-023X.2017.09.017
  材料综述 |
铝合金中的Sn微合金化:强化作用及机制*
贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆
重庆大学材料科学与工程学院,重庆 400044
Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms
JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing
College of Materials Science and Engineering,Chongqing University,Chongqing 400044
下载:  全 文 ( PDF ) ( 1730KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微合金化是提高铝合金性能的重要途径,而Sn是铝合金中最具潜力的微合金化元素之一,可以有效改善合金的组织和性能。微量Sn的加入可以显著影响铝合金中的时效析出,这是由于其在铝基体中固溶度小、扩散速率快以及与空位之间的结合能力较强所致。综述了微量Sn对可热处理强化铝合金的微观结构和力学性能的影响,深入探讨了Sn在铝合金中对时效析出的影响机理,并分析了目前微量Sn化铝合金的研究中仍存在的一些问题及主要的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾志宏
翁瑶瑶
丁立鹏
程韬
刘莹莹
刘庆
关键词:  可热处理强化铝合金    微合金化  时效析出    
Abstract: Microalloying is an effective method to improve the properties of aluminum alloys. Sn is one of the most potential microalloying elements in aluminum alloy, which can significant improve the properties of these alloys. Addition of Sn can distinctly impact the aging precipitation in aluminum alloys due to its low solubility and high diffusivity in matrix and the strong interaction energy with vacancy. This paper introduces the influence of Sn addition on the microstructure and the mechanical properties of the heat-treatable aluminum alloys, and the mechanism of Sn addition on the precipitation is discussed. Besides, the problems and research directions are pointed out.
Key words:  heat-treatable aluminum alloys    Sn    microalloying    aging precipitation
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TG146.2+1  
基金资助: *国家自然科学基金(51271209); 国家国际科技合作专项(2014DFA51270)
作者简介:  贾志宏:男,1974年生,博士,教授,主要从事铝合金形变组织及微结构的研究 E-mail:zhihongjia@cqu.edu.cn
引用本文:    
贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms. Materials Reports, 2017, 31(9): 123-127.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.017  或          https://www.mater-rep.com/CN/Y2017/V31/I9/123
[1] Hirsch J.Recent development in aluminium for automotive applications[J]. Trans Nonferrous Met Soc China,2014,24(7):1995.
[2] Millera W S, Zhuanga L, Bottemaa J, et al.Recent development in aluminium alloys for the automotive industry[J]. Mater Sci Eng A,2000,280(1):37.
[3] Hirsch J.Automotive trends in aluminium—The european perspective[J]. Mater Forum,2004,28:15.
[4] Fridlyander I N, Siste V G, Grushko O E, et al.Aluminium alloys promising materials[J]. Metal Sci Heat Treat,2002,44(9-10):365.
[5] Antunes R A, de Oliveira M C L. Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials[J]. Mater Des,2014,63:247.
[6] Bardel D, Perez M, Nelias D, et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 alumi-nium alloy[J]. Acta Mater,2013,62:129.
[7] Chen Y, Weyland M, Hutchinson C R.The effect of interrupted a-ging on the yield strength and uniform elongation of precipitation-hardened Al alloys[J]. Acta Mater,2013,61:5877.
[8] Pogatscher S, Antrekowitsch H, Uggowitzer P J.Interdependent effect of chemical composition and thermal history on artificial aging of AA6061[J]. Acta Mater,2012,60(15):5545.
[9] Pogatscher S, et al.Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J]. Acta Mater,2011,59(9):3352.
[10] Matsuda K, Sakaguchi Y, Miyata Y, et al.Precipitation sequence of various kinds of metastable phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy[J]. J Mater Sci,2000,35(1):179.
[11] Niwa K, Matsuda K, Nakamura J, et al. The effect of Ag-addition on precipitation sequence in Al-1.0mass%Mg2Si-Excess 0.4mass% Si alloy[J]. Mater Sci Forum,2007,561-565:239.
[12] Matsuda K, et al.New quaternary grain boundary precipitate in Al-Mg-Si alloy containing silver[J]. Scr Mater,2006,55(2):127.
[13] Man J, Jing L, Jie S G.The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. J Alloys Compd,2007,437(1-2):146.
[14] Marioara C D, Andersen S J, Stene T N, et al.The effect of Cu on precipitation in Al-Mg-Si alloys[J]. Philos Mag,2007,87(23):3385.
[15] Ji S X, Watson D, Wang Y, et al.Effect of Ti addition on mechanical properties of high pressure die cast Al-Mg-Si alloys[J]. Mater Sci Forum,2013,765:23.
[16] Bhattamishra A K, Lal K.Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys[J]. Mater Des,1997,18(1):25.
[17] Dang J Z, Huang Y F, Cheng J.Effect of Sc and Zr on microstructures and mechanical properties of as-cast Al-Mg-Si-Mn alloys[J]. Trans Nonferrous Met Soc China,2009,19(3):540.
[18] Saito T, Wenner S, Osmundsen E, et al.The effect of Zn on preci-pitation in Al-Mg-Si alloys[J]. Philos Mag,2014,94(21):2410.
[19] Koshino Y, Kozuka M, Hirosawa S, et al.Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography[J]. J Alloys Compd,2015,622:765.
[20] Bjørge R, Marioara C D, Andersen S J, et al.Precipitation in two Al-Mg-Ge alloys[J]. Metall Mater Trans A,2010,41(8):1907.
[21] Bourgeois L, Nie J F, Muddle B C. On the role of tin in promoting nucleation of the θ' phase in Al-Cu-Sn[J]. Mater Sci Forum,2002,396-402:789.
[22] Banerjee S, Robi P S, Srinivasan A, et al.Effect of trace additions of Sn on microstructure and mechanical properties of Al-Cu-Mg alloys[J]. Mater Des,2010,31(8):4007.
[23] Sadhukhan S, Kundu M, Ghosh M.Effect of trace added Sn on mechanical properties of Al-Zn-Mg alloy[J]. Adv Mater Res,2013,828:73.
[24] Pogatscher S, Antrekowitsch H, Werinos M, et al.Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys[J]. Phys Rev Lett,2014,112:227501-1.
[25] Hardy H K.The aging characteristics of ternary aluminum-copper alloys with cadmium, indium, or tin[J]. J Inst Met,1952,80(1371):83.
[26] Bourgeois L, Nie J F, Muddle B C.Assisted nucleation of θ' phase in Al-Cu-Sn: The modified crystallography of tin precipitates[J]. Philos Mag,2005,85(29):487.
[27] Ringer S P, Hono K, Sakurai T.The effect of trace additions of Sn on precipitation in Al-Cu[J]. Metall Mater Trans A,1995,26:2207.
[28] Gao X H, Nie J F, Muddle B C.Heterogeneous nucleation of preci-pitate phase θ' in microalloyed Al-Cu based alloys[J]. Japan Institute Met Mater,1999,63:225.
[29] Noble B.Theta-prime precipitation in aluminium-copper-cadmium alloys precipitation theta-prime dans les alliages aluminium- cuivre-cad-mium θ'-Ausscheidung in aluminium-kupfer-kadmium-legierungen[J]. Acta Metall,1968,16(3):93.
[30] Honma T, Saxey D W, Ringer S P. Effect of trace addition of Sn in Al-Cu alloy[J]. Mater Sci Forum,2006,519-521:203.
[31] Son S K, Takeda M, Mitome M, et al.Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures[J]. Mater Lett,2005,59:629.
[32] Vaithyanathan V, Wolverton C, Chen L Q.Multiscale modeling of θ' precipitation in Al-Cu binary alloys[J]. Acta Mater,2004,52(10):2973.
[33] Kimura H, Hasiguti R.Interaction of vacancies with Sn atoms and the rate of GP zone formation in an Al-Cu-Sn alloy[J]. Acta Metall,1961,9(12):1076.
[34] Silcock J M, Heal T J, Hardy H K.Intermediate precipitates in aged binary alloys of aluminum with cadmium, indium, or tin[J]. J Institute Met,1955,84(1650):19.
[35] Ringer S P, Hono K, Sakurai T.Nucleation and growth of θ' precipitation in Sn-modified A1-Cu alloys APF/MTEM observations[J]. Appl Surf Sci,1995,87(88):223.
[36] Sankaren R, Laird C.Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ' plates in Al-Cu alloy[J]. Mater Sci Eng A,1974,14:271.
[37] Bourgeois L, Dwyer C, et al.The magic thicknesses of θ' precipitates in Sn-microalloyed Al-Cu[J]. Acta Mater,2012,60(2):633.
[38] Silcock J M, Flower H M.Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of θ' in Al-Cu alloys[J]. Scr Mater,2002,46:389.
[39] Shu J.Effect of trace Sn(In) addition on ageing behavior and microstructure evolution of Al-3.5%Cu alloy[D]. Changsha: Central South University,2012 (in Chinese).舒军. 微量Sn对Al-Cu-(Mg)合金时效行为及微观组织的影响[D]. 长沙: 中南大学,2012.
[40] Timelli G, Bonollo F.Influence of tin and bismuth on machinability of lead free 6000 series aluminium alloys[J]. Mater Sci Technol,2011,27(1):291.
[41] Werinos M, Antrekowitsch H, Ebner T, et al.Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging[J]. Mater Des,2016,107:257.
[42] Werinos M, Antrekowitsch H, Kozeschnik E, et al.Ultrafast artificial aging of Al-Mg-Si alloys[J]. Scr Mater,2015,112:148.
[43] Werinos M, et al.Design strategy for controlled natural aging in Al-Mg-Si alloys[J]. Acta Mater,2016,118:296.
[44] Xu G F, Mou S Z, Yang J J, et al.Effect of trace rare earth element Er on Al-Zn-Mg alloy[J]. Trans Nonferrous Metals Soc China,2006,16:598.
[45] Jiang R P.The effect of Sn addition on aging properities in Al-Zn-Mg-Cu alloys[D]. Changsha: Central South University,2011(in Chinese).姜荣票. Sn对Al-Zn-Mg-Cu合金时效性能的影响[D]. 长沙: 中南大学,2011.
[46] Khireche S, Boughrara D, Kadri A, et al.Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.% NaCl solution[J]. Corros Sci,2014,87:504.
[47] Lin K L, Liu T P.The electrochemical corrosion behaviour of Pb-free Al-Zn-Sn solders in NaCl solution[J]. Mater Chem Phys,1998,56:171.
[1] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[2] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[3] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[4] 刘柱, 孙玉崇, 侯忠霖, 徐振, 吕哲, 陈庆强. Zr含量对5083铝合金铸轧板组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080148-6.
[5] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[6] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[7] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[8] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[9] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[10] 刘灵, 杨伟, 吴宗锴, 徐勇, 余欢. 深冷处理对快冷Mg-6Al-1Y合金等温时效析出的影响[J]. 材料导报, 2023, 37(12): 21070188-5.
[11] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[14] 王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
[15] 马殿普, 普友福, 陈高芳, 覃德清, 张家涛. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(Z1): 151-155.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed