Research Progress on the Retention Behavior of Deuterium/Helium in Tungsten as a Plasma Facing Material
WANG Wei1, 2, YE Xiaoqiu2, CHEN Chang'an2, LI Qiang2, JIN Wei2, YANG Yongbin2, GAO Tao1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065; 2 Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908
Abstract: Tungsten (W) as a plasma facing material (PFM) in the service process is not only affected by the plasma with high heat load, but also bombarded by the high-fluence particles such as deuterium (D), tritium (T), helium (He) and high-energy neutrons which produced by D-T fusion reaction. The retention and blister formation of D, T and He in tungsten are still one of the key issues needed to be solved in the fusion reactor. The correlation between the retention or blister formation and the irradiation conditions are reviewed to briefly elucidate the service performance and strengthening mechanism of W. The performance of W can be effectively improved by reducing the amount of D/He retention or inhibiting blister formation. Further study of the relationship between the retention behavior and irradiation defects are still needed to construct the correspondence between the macroscopic thermal desorption behavior and the microscopic state of D/He. These kinds of studies will provide theoretical supports for seeking suitable ways to enhance the service performance of W.
王维, 叶小球, 陈长安, 李强, 金伟, 杨勇彬, 高涛. 面向等离子体材料钨中氘/氦滞留行为的研究进展*[J]. CLDB, 2017, 31(9): 112-117.
WANG Wei, YE Xiaoqiu, CHEN Chang'an, LI Qiang, JIN Wei, YANG Yongbin, GAO Tao. Research Progress on the Retention Behavior of Deuterium/Helium in Tungsten as a Plasma Facing Material. Materials Reports, 2017, 31(9): 112-117.
Dutta N J, Buzarbaruah N, Mohanty S R.Damage studies on tungsten due to helium ion irradiation[J]. J Nucl Mater,2014,452:51.
[2]
Lemahieu N, Greuner H, Linke J, et al. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten[J]. Fusion Eng Des,2015,98-99:2020.
[3]
Zhang Hao.Preparation and irradiation effects investigation of fine crystalline W plasma facing materials[D]. Wuhan: Huazhong University of Science and Technology,2012(in Chinese).张浩. 面向等离子体细晶粒钨块体材料的制备及辐照效应的研究[D]. 武汉: 华中科技大学, 2012.
[4]
Zhang Zilong.The irradiation effect research of tungsten with surface crack[D]. Beijing: Beijing University of Technology,2015(in Chinese).张子龙. 钨裂纹损伤后的再辐照效应研究[D]. 北京:北京工业大学,2015.
[5]
Yuan Yue.Research on damage behaviors of tungsten materials under high heat/particle fluxes[D]. Beijing:Tsinghua University,2013(in Chinese).袁悦. 高热/粒子流作用下钨材料的损伤行为研究[D]. 北京:清华大学,2013.
[6]
Krauz V I, Martynenko Y V, Svechnikov N Y, et al.Nanostructures in controlled thermonuclear fusion devices[J]. Phys Uspekhi,2010,53(10):1015.
[7]
Roth J, Tsitrone E, et al. Recent analysis of key plasma wall interea-ctions issues for ITER[J]. J Nucl Mater,2009, 390-391:1.
[8]
Federici G, Brooks J N, Coster D P, et al. Assessment of erosion and tritium codeposition in ITER-FEAT[J]. J Nucl Mater, 2001,290-293(3):260.
[9]
Roth J, Schmid K.Hydrogen in tungsten as plasma-facing material[J]. Phys Scr, 2011,2011(T145):1972.
[10]
Philipps V.Tungsten as material for plasma-facing components in fusion devices[J]. J Nucl Mater,2011,415(1):S2.
[11]
Alimov V K, Nakamura H, Tyburska-Puschel B, et al.Deuterium retention in plasma spray tungsten coatings exposed to low-energy, high flux D plasma[J]. J Nucl Mater,2011,414(3):479.
[12]
Tokunaga K, Baldwin M J, Doerner R P, et al.Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma[J]. J Nucl Mater,2005,337(1-3):887.
[13]
Shu W M, Luo G N, Yamanishi T. Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV[J]. J Nucl Mater,2007,367-370:1463.
[14]
Ogorodnikova O V, Roth J, Mayer M.Ion-driven deuterium retention in tungsten[J]. J Appl Phys,2008,103:034902 .
[15]
Luo G N, Umstadter K, Shu W M, et al.Behavior of tungsten with exposure to deuterium plasmas[J]. Nucl Instrum Methods Phys Res Section B: Beam Interactions with Materials and Atoms,2009,267(18):3041.
[16]
Luo G N, Shu W M, Nishi M.Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10—100 eV plasmas[J]. Fusion Eng Des,2006,81:957.
[17]
Wright G M, Alves E, Alves L C, et al.Hydrogenic retention of high-Z refractory metals exposed to ITER divertor relevant plasma conditions[J]. Nucl Fusion,2010,50(5):703.
[18]
Causey R A, Doerner R, Fraser H, et al.Defects in tungsten responsible for molecular hydrogen isotope retention after exposure to low energy plasmas[J]. J Nucl Mater,2009,390(3):717.
[19]
Haasz A A, Poon M, Davis J W. The effect of ion damage on deuterium trapping in tungsten[J]. J Nucl Mater,1999,s266-269(2):520.
[20]
Fan C S, Doerner R P, Luckhardt S.Investigation of plasma exposed W-1% La2 O3 tungsten in a high ion flux, low ion energy, low carbon impurity plasma environment for the international thermonuclear experimental reactor[J]. J Nucl Mater,1999,264(s1-2):89.
[21]
Ye M Y, Kanehara H, Fukuta S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. J Nucl Mater,2003,313-316:72.
[22]
Tokunaga K, Doerner R P, Seaydarian R, et al. Modification of tungsten coated carbon by low energy and high flux deuterium irra-diation[J]. J Nucl Mater,2002,307-311:126.
[23]
Shu W M, Kawasuso A, Yamanishi T. Recent findings on blistering and deuterium retention in tungsten exposed to high-fluence deu-terium plasma[J]. J Nucl Mater,2003,s313-316(1):72.
[24]
Sze F C, Chousal L, Doerner R P, et al. Growth of redeposited carbon and its impact on isotope retention properties on tungsten in a high flux deuterium plasma[J]. J Nucl Mater,1999,266-269:1212.
[25]
Poon M, Haasz A A, Davis J W, et al. Impurity effects and tempera-ture dependence of D retention in single crystal tungsten[J]. J Nucl Mater,2003,313-316:199.
[26]
Ogorodnikova O V, Roth J, Mayer M. Deuterium retention in tungsten in dependence of the surface conditions[J]. J Nucl Mater,2003,313-316:469.
[27]
Yang Z, Wang W, Li Q, et al.Surface analysis of VPSW coatings boronized by an ICRF discharge in HT-7[J]. J Nucl Mater,2011,417:520.
[28]
Fukuda M, Yabuuchi K, Nogami S, et al.Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR[J]. J Nucl Mater,2014,455:460.
[29]
Hasegawa A, Fukuda M, Nogami S, et al.Neutron irradiation effects on tungsten materials[J]. Fusion Eng Des,2014,89:1568.
[30]
Veleva L, Schäublin R, Plocinski T, et al.Processing and characteri-zation of a W-2Y material for fusion power reactors[J]. Fusion Eng Des,2011,86:2450.
[31]
Wurster S, Gludovatz B, Hoffmann A, et al.Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites[J]. J Nucl Mater,2011,413:166.
[32]
Henriksson K O E, Nordlund K, Krasheninnikov A, et al. Diffe-rence in formation of hydrogen and helium clusters in tungsten[J]. Appl Phys Lett,2005,87(16):163113.
[33]
Tokunaga K, Tamura S, Yoshida N, et al. Synergistic effects of high heat loading and helium irradiation of tungsten[J]. J Nucl Mater,2004,329-333:757.
[34]
Li Chao.The effect of the plasma irradiation on tungsten surface change[D]. Beijing: Beijing University of Technology, 2015 (in Chinese).李超. 等离子体辐照效应对钨材料表面改变的研究[D]. 北京:北京工业大学, 2015.
[35]
Baldwin M J, Lynch T C, Doerner R P, et al.Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: A study of ion energy threshold and early stage growth[J]. J Nucl Mater,2011,415:S104.
[36]
Behrisch R, Scherzer B M U. He wall bombardment and wall erosion in fusion devices[J]. Radiation Effects Defects Solids,1983,78:393.
[37]
Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten[J]. J Nucl Mater,2002,307-311:135.
[38]
Nagata S, Takahiro K. Effect of helium irradiation on trapping and thermal release of deuterium implanted in tungsten[J]. J Nucl Mater,2001,290-293(2):135.
[39]
Nishijima D, Iwakiri H, Amano K, et al.Suppression of blister formation and deuterium retention on tungsten surface due to mechanical polishing and helium pre-exposure[J]. Nuclear Fusion,2005,45(7):669.
[40]
Ogorodnikova O V, Schwarz-Selinger T, Sugiyama K, et al.Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas[J]. J Appl Phys,2011,109(1):013309.
[41]
Hino T, Koyama K, Yamauchi Y, et al. Hydrogen retention pro-perties of polycrystalline tungsten and helium irradiated tungsten[J]. Fusion Eng Des,1998,39-40:227.
[42]
Nishijima D, Sugimoto T, Iwakiri H, et al. Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure[J]. J Nucl Mater,2005,337-339:927.
[43]
Miyamoto M, Nishijima D, Ueda Y, et al.Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas[J]. Nucl Fusion,2009,49:7.
[44]
Miyamoto M, Nishijima D, Baldwin M J, et al.Microstructures and deuterium-retention behavior of tungsten exposed to D+(He and/or Be) mixture plasmas[J]. Mater Trans,2015,54(4):420.
[45]
Finlay T J, Davis J W, Haasz A A.Effects of grain structure on D retention in W under simultaneous D-He irradiation[J]. J Nucl Mater,2015,463:997.
[46]
Finlay T J, Davis J W, Sugiyama K, et al.Effects of D and He implantation depth on D retention in tungsten under simultaneous D-He ion irradiation[J]. Phys Scr,2016,14042:5.
[47]
Lee H T, Haasz A A, Davis J W, et al. Hydrogen and helium trapping in tungsten under simultaneous irradiations[J]. J Nucl Mater,2007,363-365:898.
[48]
Lee H T, Haasz A A, Davis J W, et al.Hydrogen and helium trapping in tungsten under single and sequential irradiations[J]. J Nucl Mater,2007,360(2):196.
[49]
Bobyr N P, Alimov V Kh, et al.Influence of helium on hydrogen isotope exchange in tungsten at sequential exposures to deuterium and helium-protium plasmas[J]. J Nucl Mater,2015,463:1122.
[50]
Ryabtsev S, Gasparyan Yu, Zibrov M, et al.Deuterium thermal desorption from vacancy clusters in tungsten[J]. Nucl Instruments Methods Phys Res Section B: Beam Interactions with Materials and Atoms, 2016,382:101.
[51]
Zibrov M, Ryabtsev S, Gasparyan Yu, et al.Experimental determination of the deuterium binding energy with vacancies in tungsten[J]. J Nucl Mater,2016,477:292.
[52]
Zibrov M, Gasparyan Yu, Ryabtsev S, et al.Isolation of peaks in TDS spectra of deuterium from ion irradiated tungsten[J]. Phys Procedia,2015,71:83.
[53]
Oya Y, Hatano Y, Shimada M, et al.Recent progress of hydrogen isotope behavior studies for neutron orheavy ion damaged W[J]. Fusion Eng Des,2016,113:211.
[54]
Hasegawa A, Fukuda M, Yabuuchi K.Neutron irradiation effects on the microstructural development of tungsten tungsten alloys[J]. J Nucl Mater,2016,471:175.
[55]
Hatanoa Y, Ami K, Kh V, et al.Deuterium retention in W and W-Re alloy irra-diated with high energy Fe and W ions: Effects of irradiation temperature[J]. Nucl Mater Energy,2016,9:93.
[56]
Ogorodnikova O V, Gann V V, Zibrov M S, et al.Comparison of deuterium retention in tungsten pre-damaged with energetic electrons, self-ions and neutrons[J]. Phys Procedia,2015,71:41.
[57]
Fujita H, Yuyama K, Li X C, et al.Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten[J]. Phys Scr,2016,T167:014068.