Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 112-117    https://doi.org/10.11896/j.issn.1005-023X.2017.09.015
  材料综述 |
面向等离子体材料钨中氘/氦滞留行为的研究进展*
王维1, 2, 叶小球2, 陈长安2, 李强2, 金伟2, 杨勇彬2, 高涛1
1 四川大学原子与分子物理研究所,成都 610065;
2 表面物理与化学重点实验室,江油 621908
Research Progress on the Retention Behavior of Deuterium/Helium in Tungsten as a Plasma Facing Material
WANG Wei1, 2, YE Xiaoqiu2, CHEN Chang'an2, LI Qiang2, JIN Wei2, YANG Yongbin2, GAO Tao1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065;
2 Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908
下载:  全 文 ( PDF ) ( 1708KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为面向等离子体材料,钨(W)在服役的过程中不仅受到等离子体造成的高能热负荷的作用,还受到高束流粒子如氘(D)、氚(T)、氦(He)等的轰击和D-T聚变反应产生的高能中子的影响。W中D、T、He的滞留和起泡,仍是聚变堆装置中有待解决的关键问题之一。综述了D、T和He的滞留行为及其气泡形成与辐照条件之间的关系,简要评述了W的服役性能和强化机理。通过降低W中D/He滞留量、抑制气泡的形成可有效改善W的服役性能。深入研究D/He滞留行为与辐照缺陷之间的相互作用关系,进而构建D/He的宏观热脱附行为与其微观状态之间的对应关系,为寻找合适途径来改善W的服役性能提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王维
叶小球
陈长安
李强
金伟
杨勇彬
高涛
关键词:        滞留  起泡    
Abstract: Tungsten (W) as a plasma facing material (PFM) in the service process is not only affected by the plasma with high heat load, but also bombarded by the high-fluence particles such as deuterium (D), tritium (T), helium (He) and high-energy neutrons which produced by D-T fusion reaction. The retention and blister formation of D, T and He in tungsten are still one of the key issues needed to be solved in the fusion reactor. The correlation between the retention or blister formation and the irradiation conditions are reviewed to briefly elucidate the service performance and strengthening mechanism of W. The performance of W can be effectively improved by reducing the amount of D/He retention or inhibiting blister formation. Further study of the relationship between the retention behavior and irradiation defects are still needed to construct the correspondence between the macroscopic thermal desorption behavior and the microscopic state of D/He. These kinds of studies will provide theoretical supports for seeking suitable ways to enhance the service performance of W.
Key words:  tungsten    deuterium    helium    retention    blister formation
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TL62+.7  
  TB31  
基金资助: *国家磁约束聚变计划专项(2015GB109002); 中国工程物理研究院科学技术发展基金(2014B0301048)
通讯作者:  高涛:男,教授,主要从事凝聚态物理研究 E-mail:gaotao@scu.edu.cn   
作者简介:  王维:女,1992年生,硕士研究生,主要从事凝聚态物理研究 叶小球:通讯作者,男,副研究员,主要从事氚化学与氚工艺研究E-mail:yexiaoqiu@caep.cn
引用本文:    
王维, 叶小球, 陈长安, 李强, 金伟, 杨勇彬, 高涛. 面向等离子体材料钨中氘/氦滞留行为的研究进展*[J]. CLDB, 2017, 31(9): 112-117.
WANG Wei, YE Xiaoqiu, CHEN Chang'an, LI Qiang, JIN Wei, YANG Yongbin, GAO Tao. Research Progress on the Retention Behavior of Deuterium/Helium in Tungsten as a Plasma Facing Material. Materials Reports, 2017, 31(9): 112-117.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.015  或          https://www.mater-rep.com/CN/Y2017/V31/I9/112
[1] Dutta N J, Buzarbaruah N, Mohanty S R.Damage studies on tungsten due to helium ion irradiation[J]. J Nucl Mater,2014,452:51.
[2] Lemahieu N, Greuner H, Linke J, et al. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten[J]. Fusion Eng Des,2015,98-99:2020.
[3] Zhang Hao.Preparation and irradiation effects investigation of fine crystalline W plasma facing materials[D]. Wuhan: Huazhong University of Science and Technology,2012(in Chinese).张浩. 面向等离子体细晶粒钨块体材料的制备及辐照效应的研究[D]. 武汉: 华中科技大学, 2012.
[4] Zhang Zilong.The irradiation effect research of tungsten with surface crack[D]. Beijing: Beijing University of Technology,2015(in Chinese).张子龙. 钨裂纹损伤后的再辐照效应研究[D]. 北京:北京工业大学,2015.
[5] Yuan Yue.Research on damage behaviors of tungsten materials under high heat/particle fluxes[D]. Beijing:Tsinghua University,2013(in Chinese).袁悦. 高热/粒子流作用下钨材料的损伤行为研究[D]. 北京:清华大学,2013.
[6] Krauz V I, Martynenko Y V, Svechnikov N Y, et al.Nanostructures in controlled thermonuclear fusion devices[J]. Phys Uspekhi,2010,53(10):1015.
[7] Roth J, Tsitrone E, et al. Recent analysis of key plasma wall interea-ctions issues for ITER[J]. J Nucl Mater,2009, 390-391:1.
[8] Federici G, Brooks J N, Coster D P, et al. Assessment of erosion and tritium codeposition in ITER-FEAT[J]. J Nucl Mater, 2001,290-293(3):260.
[9] Roth J, Schmid K.Hydrogen in tungsten as plasma-facing material[J]. Phys Scr, 2011,2011(T145):1972.
[10] Philipps V.Tungsten as material for plasma-facing components in fusion devices[J]. J Nucl Mater,2011,415(1):S2.
[11] Alimov V K, Nakamura H, Tyburska-Puschel B, et al.Deuterium retention in plasma spray tungsten coatings exposed to low-energy, high flux D plasma[J]. J Nucl Mater,2011,414(3):479.
[12] Tokunaga K, Baldwin M J, Doerner R P, et al.Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma[J]. J Nucl Mater,2005,337(1-3):887.
[13] Shu W M, Luo G N, Yamanishi T. Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV[J]. J Nucl Mater,2007,367-370:1463.
[14] Ogorodnikova O V, Roth J, Mayer M.Ion-driven deuterium retention in tungsten[J]. J Appl Phys,2008,103:034902 .
[15] Luo G N, Umstadter K, Shu W M, et al.Behavior of tungsten with exposure to deuterium plasmas[J]. Nucl Instrum Methods Phys Res Section B: Beam Interactions with Materials and Atoms,2009,267(18):3041.
[16] Luo G N, Shu W M, Nishi M.Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10—100 eV plasmas[J]. Fusion Eng Des,2006,81:957.
[17] Wright G M, Alves E, Alves L C, et al.Hydrogenic retention of high-Z refractory metals exposed to ITER divertor relevant plasma conditions[J]. Nucl Fusion,2010,50(5):703.
[18] Causey R A, Doerner R, Fraser H, et al.Defects in tungsten responsible for molecular hydrogen isotope retention after exposure to low energy plasmas[J]. J Nucl Mater,2009,390(3):717.
[19] Haasz A A, Poon M, Davis J W. The effect of ion damage on deuterium trapping in tungsten[J]. J Nucl Mater,1999,s266-269(2):520.
[20] Fan C S, Doerner R P, Luckhardt S.Investigation of plasma exposed W-1% La2 O3 tungsten in a high ion flux, low ion energy, low carbon impurity plasma environment for the international thermonuclear experimental reactor[J]. J Nucl Mater,1999,264(s1-2):89.
[21] Ye M Y, Kanehara H, Fukuta S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. J Nucl Mater,2003,313-316:72.
[22] Tokunaga K, Doerner R P, Seaydarian R, et al. Modification of tungsten coated carbon by low energy and high flux deuterium irra-diation[J]. J Nucl Mater,2002,307-311:126.
[23] Shu W M, Kawasuso A, Yamanishi T. Recent findings on blistering and deuterium retention in tungsten exposed to high-fluence deu-terium plasma[J]. J Nucl Mater,2003,s313-316(1):72.
[24] Sze F C, Chousal L, Doerner R P, et al. Growth of redeposited carbon and its impact on isotope retention properties on tungsten in a high flux deuterium plasma[J]. J Nucl Mater,1999,266-269:1212.
[25] Poon M, Haasz A A, Davis J W, et al. Impurity effects and tempera-ture dependence of D retention in single crystal tungsten[J]. J Nucl Mater,2003,313-316:199.
[26] Ogorodnikova O V, Roth J, Mayer M. Deuterium retention in tungsten in dependence of the surface conditions[J]. J Nucl Mater,2003,313-316:469.
[27] Yang Z, Wang W, Li Q, et al.Surface analysis of VPSW coatings boronized by an ICRF discharge in HT-7[J]. J Nucl Mater,2011,417:520.
[28] Fukuda M, Yabuuchi K, Nogami S, et al.Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR[J]. J Nucl Mater,2014,455:460.
[29] Hasegawa A, Fukuda M, Nogami S, et al.Neutron irradiation effects on tungsten materials[J]. Fusion Eng Des,2014,89:1568.
[30] Veleva L, Schäublin R, Plocinski T, et al.Processing and characteri-zation of a W-2Y material for fusion power reactors[J]. Fusion Eng Des,2011,86:2450.
[31] Wurster S, Gludovatz B, Hoffmann A, et al.Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites[J]. J Nucl Mater,2011,413:166.
[32] Henriksson K O E, Nordlund K, Krasheninnikov A, et al. Diffe-rence in formation of hydrogen and helium clusters in tungsten[J]. Appl Phys Lett,2005,87(16):163113.
[33] Tokunaga K, Tamura S, Yoshida N, et al. Synergistic effects of high heat loading and helium irradiation of tungsten[J]. J Nucl Mater,2004,329-333:757.
[34] Li Chao.The effect of the plasma irradiation on tungsten surface change[D]. Beijing: Beijing University of Technology, 2015 (in Chinese).李超. 等离子体辐照效应对钨材料表面改变的研究[D]. 北京:北京工业大学, 2015.
[35] Baldwin M J, Lynch T C, Doerner R P, et al.Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: A study of ion energy threshold and early stage growth[J]. J Nucl Mater,2011,415:S104.
[36] Behrisch R, Scherzer B M U. He wall bombardment and wall erosion in fusion devices[J]. Radiation Effects Defects Solids,1983,78:393.
[37] Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten[J]. J Nucl Mater,2002,307-311:135.
[38] Nagata S, Takahiro K. Effect of helium irradiation on trapping and thermal release of deuterium implanted in tungsten[J]. J Nucl Mater,2001,290-293(2):135.
[39] Nishijima D, Iwakiri H, Amano K, et al.Suppression of blister formation and deuterium retention on tungsten surface due to mechanical polishing and helium pre-exposure[J]. Nuclear Fusion,2005,45(7):669.
[40] Ogorodnikova O V, Schwarz-Selinger T, Sugiyama K, et al.Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas[J]. J Appl Phys,2011,109(1):013309.
[41] Hino T, Koyama K, Yamauchi Y, et al. Hydrogen retention pro-perties of polycrystalline tungsten and helium irradiated tungsten[J]. Fusion Eng Des,1998,39-40:227.
[42] Nishijima D, Sugimoto T, Iwakiri H, et al. Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure[J]. J Nucl Mater,2005,337-339:927.
[43] Miyamoto M, Nishijima D, Ueda Y, et al.Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas[J]. Nucl Fusion,2009,49:7.
[44] Miyamoto M, Nishijima D, Baldwin M J, et al.Microstructures and deuterium-retention behavior of tungsten exposed to D+(He and/or Be) mixture plasmas[J]. Mater Trans,2015,54(4):420.
[45] Finlay T J, Davis J W, Haasz A A.Effects of grain structure on D retention in W under simultaneous D-He irradiation[J]. J Nucl Mater,2015,463:997.
[46] Finlay T J, Davis J W, Sugiyama K, et al.Effects of D and He implantation depth on D retention in tungsten under simultaneous D-He ion irradiation[J]. Phys Scr,2016,14042:5.
[47] Lee H T, Haasz A A, Davis J W, et al. Hydrogen and helium trapping in tungsten under simultaneous irradiations[J]. J Nucl Mater,2007,363-365:898.
[48] Lee H T, Haasz A A, Davis J W, et al.Hydrogen and helium trapping in tungsten under single and sequential irradiations[J]. J Nucl Mater,2007,360(2):196.
[49] Bobyr N P, Alimov V Kh, et al.Influence of helium on hydrogen isotope exchange in tungsten at sequential exposures to deuterium and helium-protium plasmas[J]. J Nucl Mater,2015,463:1122.
[50] Ryabtsev S, Gasparyan Yu, Zibrov M, et al.Deuterium thermal desorption from vacancy clusters in tungsten[J]. Nucl Instruments Methods Phys Res Section B: Beam Interactions with Materials and Atoms, 2016,382:101.
[51] Zibrov M, Ryabtsev S, Gasparyan Yu, et al.Experimental determination of the deuterium binding energy with vacancies in tungsten[J]. J Nucl Mater,2016,477:292.
[52] Zibrov M, Gasparyan Yu, Ryabtsev S, et al.Isolation of peaks in TDS spectra of deuterium from ion irradiated tungsten[J]. Phys Procedia,2015,71:83.
[53] Oya Y, Hatano Y, Shimada M, et al.Recent progress of hydrogen isotope behavior studies for neutron orheavy ion damaged W[J]. Fusion Eng Des,2016,113:211.
[54] Hasegawa A, Fukuda M, Yabuuchi K.Neutron irradiation effects on the microstructural development of tungsten tungsten alloys[J]. J Nucl Mater,2016,471:175.
[55] Hatanoa Y, Ami K, Kh V, et al.Deuterium retention in W and W-Re alloy irra-diated with high energy Fe and W ions: Effects of irradiation temperature[J]. Nucl Mater Energy,2016,9:93.
[56] Ogorodnikova O V, Gann V V, Zibrov M S, et al.Comparison of deuterium retention in tungsten pre-damaged with energetic electrons, self-ions and neutrons[J]. Phys Procedia,2015,71:41.
[57] Fujita H, Yuyama K, Li X C, et al.Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten[J]. Phys Scr,2016,T167:014068.
[1] 仵金玲, 刘思雨, 张彪, 魏智磊, 史忠旗. 连接温度对W/Ni/Kovar真空扩散连接接头界面结构及结合强度的影响[J]. 材料导报, 2024, 38(4): 22090302-6.
[2] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[3] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[4] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[5] 廖路, 张勇斌, 李鹏. 添加铜中间层的钨真空扩散焊接研究[J]. 材料导报, 2024, 38(13): 22100128-7.
[6] 闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
[7] 黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
[8] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[9] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[10] 罗祥, 王玲, 王振地. 引气剂起泡和稳泡能力的温度敏感性研究[J]. 材料导报, 2023, 37(18): 22030209-8.
[11] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[12] 戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
[13] 曾斌, 曾祥荣, 黄万抚. 钨冶炼除磷渣中浸出钼和钨研究[J]. 材料导报, 2023, 37(15): 21120218-5.
[14] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[15] 张舒婷, 黄向玫, 赵栋烨, 洪志浩, 曾晓晓, 才来中. 含TiN阻氚过渡层新型第一壁的氘渗透实验研究[J]. 材料导报, 2022, 36(Z1): 22030154-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed