Abstract: The atomic radius of hydrogen and its isotopes is very small, making them easy to diffuse and permeate in materials. Once they permeate into the materials of nuclear reactor components, they will cause significant damage to the materials, which can lead to serious economic loss and even serious reactor safety accidents and radioactive pollution. The solution is to set a permeation barrier on the permeation path of hydrogen and its isotopes, and to prepare a hydrogen/deuterium/tritium permeation barrier coating on the surface of the related nuclear reactor components. According to the service environment of hydrogen/deuterium/tritium permeation barrier coatings, high requirements have been put forward for their performance. The coatings must have a high permeation reduction factor (PRF), self-healing ability, good thermal shock resistance, low irradiation activation, good radiation resistance, and good compatibility with liquid coolants. In addition, the coating should also be able to be easily prepared on the surface of the complex nuclear reactor components, with a potential for engineering applications. Oxides and their composite coatings have many advantages, such as high melting point, stable chemical properties, relatively simple preparation process, and excellent hydrogen isotope permeation barrier properties; therefore, they have become a hot spot in the research field of hydrogen/deuterium/tritium permeation barrier coatings, especially α-Al2O3 coatings. The preparation processes of α-Al2O3 and its composite coatings by the hot-dip aluminizing (HDA), pack cementation (PC) and electrochemical deposition (ECA) have been reported in industrial application. All the three methods have good feasibility for large-scale production. Moreover, the research on the permeation mechanism of hydrogen isotopes mainly involves two key limiting steps in the process, surface adsorption and intragranular diffusion. The adsorption mechanism of hydrogen isotopes on the surface of coating materials is reflected in the permeation pressure index (n). n for hydrogen isotopes in metal materials is 0.5, indicating that hydrogen isotopes are dissolved into atoms, and then the hydrogen atoms diffuse in the metal lattice. It is found that n=1 for hydrogen isotopes in ceramic materials, indicating that hydrogen isotopes are adsorbed in a molecular state and diffuse in the ceramic in molecular form. In addition, the deuterium permeation test PRF value of Al2O3 coating becomes smaller after irradiation, and the hydrogen barrier performance of Al2O3 deteriorates rapidly due to the irradiation damage. In this paper, we briefly introduce the latest research progress on the selection of hydrogen/deuterium/tritium permeation barrier coating mate-rials, the exploration of the preparation technology, details of the experimental research on the hydrogen isotope permeation of the coatings, and the hydrogen isotope permeation mechanism and its irradiation effect. The developing direction of using hydrogen/deuterium/tritium permeation barrier coatings on the surface of related nuclear reactor components is also highlighted.
1 Su Z T, Yang J C, Ke G T. Space nuclear power, Shanghai Jiao Tong University Press, China, 2016(in Chinese). 苏著亭, 杨继材, 柯国土. 空间核动力, 上海交通大学出版社, 2016. 2 Perujo A, Forcey K S. Fusion Engineering and Design, 1995, 28, 252. 3 Shan C Q. Tritium and tritium barrier materials, Atomic Energy Press, China, 2005(in Chinese). 山常起. 氚与阻氚渗透材料, 原子能出版社, 2005. 4 Yao Z, Hao J, Zhou C, et al. Journal of Nuclear Materials, 2000, 283, 1287. 5 Causey R A, Wampler W R. Journal of Nuclear Materials, 1995, 220, 823. 6 Nickel H, Koizlik K. Thin Solid Films, 1983, 108(4), 401. 7 Wu Y, He D, Zhang H, et al. Fusion Engineering and Design, 2015, 90, 105. 8 Levchuk D, Levchuk S, Maier H, et al. Journal of Nuclear Materials, 2007, 367, 1033. 9 Aiello A, Ciampichetti A, Benamati G. Journal of Nuclear Materials, 2004, 329, 1398. 10 Konys J, Krauss W, Holstein N. Fusion Engineering and Design, 2010, 85, 2141. 11 Wong C P C, Abdou M, Dagher M, et al. Fusion Engineering and Design, 2010, 85(7-9), 1129. 12 Singh K, Fernandes A, Paul B, et al. Fusion Engineering and Design, 2014, 89(11), 2534. 13 Kulsartov T V, Hayashi K, Nakamichi M, et al. Fusion Engineering and Design, 2006, 81, 701. 14 Nakamichi M, Kulsartov T V, Hayashi K, et al. Fusion Engineering and Design, 2007, 82, 2246. 15 Zhang K, Hatano Y. Fusion Engineering and Design, 2010, 85, 1090. 16 Yao Z, Suzuki A, Levchuk D, et al. Journal of Nuclear Materials, 2009, 386, 700. 17 Chikada T, Shimada M, Pawelko R J, et al. Fusion Engineering and Design, 2014, 89, 1402. 18 Yang H G, Zhan Q, Zhao W W, et al. Journal of Nuclear Materials, 2011, 417, 1237. 19 Zhan Q, Yang H G, Zhao W W, et al. Journal of Nuclear Materials, 2013, 442, 603. 20 Zhao W W, Yuan X M, Zhan Q, et al. In:Proceedings of the 2011 Annual Conference of the Chinese Nuclear Society (Volume 4). Beijing, China, 2011, pp. 230 (in Chinese). 赵崴巍, 袁晓明, 占勤, 等. 中国核学会2011年学术年会论文集第4册. 北京, 2011, pp. 230. 21 Zhan Q, Yang H G, Zhao W W, et al. Transactions of Materials and Heat Treatment, 2008, 29(2), 158 (in Chinese). 占勤, 杨洪广, 赵崴巍, 等. 材料热处理学报, 2008, 29(2), 158. 22 Wang J, Li Q, Cao J L, et al. International Journal of Hydrogen Energy, 2016, 41(2), 1326. 23 Li S, He D, Liu X, et al. Journal of Nuclear Materials, 2012, 420, 405. 24 He D, Li S, Liu X, et al. Fusion Engineering and Design, 2014, 89(1), 35. 25 Wu Y, He D, Zhang H, et al. Fusion Engineering and Design, 2015, 90, 105. 26 Zhang G K, Ju L, Chen C A, et al. Journal of Nuclear Materials, 2011, 417, 1245. 27 Zhang G K, Chen C A, Luo D L, et al. Fusion Engineering and Design, 2012, 87, 1370. 28 Yang F, Xiang X, Lu G, et al. Journal of Nuclear Materials, 2016, 478, 144. 29 Cao W, Ge S, Song J, et al. International Journal of Hydrogen Energy, 2016, 41(48), 23125. 30 Xiang X, Wang X, Zhang G, et al. International Journal of Hydrogen Energy, 2015, 40(9), 3697. 31 Gao J, Suo J. Surface and Coatings Technology, 2010, 204(23), 3876. 32 Gao J, Zhang D, Suo J. Fusion Engineering and Design, 2010, 85, 1618. 33 Wang Y, Feng S, Liu D, et al. Surface and Coatings Technology, 2017, 330, 277. 34 Zhang M, Xu B, Ling G. Applied Surface Science, 2015, 331, 1. 35 Zhang M, Chen C, Zhang G, et al. Physics Procedia, 2013, 50, 206. 36 Li Z L, Tao J, Liu H B, et al. Atomic Energy Science and Technology, 2008, 42(Z1), 217 (in Chinese). 李转利, 陶杰, 刘红兵, 等. 原子能科学技术, 2008, 42(Z1), 217. 37 Gao Q, Tao J, LuoX Y. Atomic Energy Science and Technology. 2008, 42(Z1), 212 (in Chinese). 高强, 陶杰, 骆心怡, 等. 原子能科学技术, 2008, 42(Z1), 212. 38 Liu H B. Preparation of oxide barrier tritium coating and its performance by plasma composite infiltration technology. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010 (in Chinese). 刘红兵. 等离子复合渗技术制备氧化物阻氚涂层及其性能研究. 博士学位论文, 南京航空航天大学, 2010. 39 Wang L, Yang J J, Feng Y J, et al. Journal of Nuclear Materials, 2017, 487, 280. 40 Wang L, Yang J, Liang C, et al. Fusion Engineering and Design, 2019, 143, 233. 41 Dong J, Sun Y, He F, et al. Materials Research Express, 2018, 6(3), 036409. 42 Dong J, Sun Y, Dou B, et al. In:TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Springer International Publishing, British, 2019, pp. 687. 43 Dong J, Kou B S, He F Y, et al. Surface Technology, 2019, 48(6), 221 (in Chinese). 董健, 窦炳胜, 贺飞羽, 等. 表面技术, 2019, 48(6), 221. 44 Sun Y, Dong J, Zhao P, et al. Surface and Coatings Technology, 2017, 330, 234. 45 Dong J, Sun Y, Dou B, et al. Surface and Coatings Technology, 2018, 354, 184. 46 Dong J, Sun Y, He F. Surface and Coatings Technology, 2019, 375, 833. 47 Oriani R A. In:Cold fusion source book, Springer Berlin Heidelberg, New York, USA, 1994. 48 Dushman S, Pierce J R. Physics Today, 1949, 2(7), 27. 49 Yang B, Xiong Q, Liu Y G, et al. Journal of Functional Materials, 2002, 33(2), 176(in Chinese). 杨斌, 熊器, 刘耀光, 等. 功能材料, 2002, 33(2), 176. 50 Wang X Y, Zou J S, Huang N K. Journal of Materials Protection, 2002, 35(2), 23 (in Chinese). 王小英, 邹觉生, 黄宁康. 材料保护, 2002, 35(2), 23. 51 Barth C, Reichling M. Nature, 2001, 414(6859), 54. 52 Emin D, Baskes M I. Physical Review Letters, 1979, 42(12), 791. 53 Ferriss D H, Turnbull A. Analysis of reversible and irreversible hydrogen trapping in metal, National Physical Laboratory, UK, 1988. 54 Hollenberg G W. In:3rd International Symposium on Fusion Nuclear Technology. Los Angeles, USA, 1995, pp. 780. 55 Song W H, Du J J. Nuclear Fusion and Plasma Physics, 1998, 18(3), 9 (in Chinese). 宋文海, 杜家驹. 核聚变与等离子体物理, 1998, 18(3), 9. 56 Hermann K, Michalak A, Witko M. Catalysis Today, 1996, 32, 321. 57 Chen M, Waghmare U V, Friend C M, et al. The Journal of Chemical Physics, 1998, 109(16), 6854. 58 Zhang G K. Theoretical studies on hydrogen behavior in α-Al2O3 tritium permeation barrier material. Ph. D. Thesis, University of Science and Technology of China, China, 2014 (in Chinese). 张桂凯. α-Al2O3阻氚涂层材料中氢行为的理论研究. 博士学位论文, 中国科学技术大学, 2014. 59 Shan C Q. China Nuclear Science and Technology Report. CNIC-00627, 1992 (in Chinese). 山常起. 中国核科技报告. CNIC-00627, 1992. 60 Liu S, Zheng H, Gui Q H, et al. Acta Metallurgica Sinica, 2004, 40(4), 393 (in Chinese). 刘实, 郑华, 贵全红, 等. 金属学报, 2004, 40(4), 393. 61 Levchuk D, Koch F, Maier H, et al. Journal of Nuclear Materials, 2004, 328, 103. 62 Takeda T, Iwatsuki J, Inagaki Y. Journal of Nuclear Materials, 2004, 326(1), 47. 63 Checchetto R, Miotello A, Tosello C, et al. Journal of Physics:Condensed Matter, 2002, 14(25), 6307. 64 Zhang W, Zhu C D, Yang J, et al. Surface and Coatings Technology, 2021, 423, 127616. 65 Lyu Y M, Xu Y P, Pan X D, et al. International Journal of Hydrogen Energy, 2019, 44(47), 25834 66 Yuan X M, Yang H G, Zhan Q. In:Proceedings of the Second China Tritium Science and Technology Symposium. Chengdu, China, 2017, pp.73 (in Chinese). 袁晓明, 杨洪广, 占勤. 第二届中国氚科学与技术学术交流会论文集. 成都, 2017, pp. 73. 67 Akiyoshi M, Yano T. Progress in Nuclear Energy, 2008, 50, 567. 68 Ibarra A, Muñoz-Martín A, Martín P, et al. Journal of Nuclear Mate-rials, 2007, 367, 1003. 69 Ackland G. Science, 2010, 327(5973), 1587. 70 Han W, Demkowicz M J, Mara N A, et al. Advanced Materials, 2013, 25(48), 6975. 71 Chen Y, Yu K Y, Liu Y, et al. Nature Communications, 2015, 6(1), 1. 72 He P, Yao W Z, Lyu J M. Materials ReportsA:Review Papers, 2018, 32(1), 34 (in Chinese). 何培, 姚伟志, 吕建明, 等. 材料导报:综述篇, 2018, 32(1), 34.