Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21050015-7    https://doi.org/10.11896/cldb.21050015
  无机非金属及其复合材料 |
反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望
黄洪涛*, 刘阳,王旺
中山大学中法核工程与技术学院,广东 珠海 519082
Complete Review and Prospects of Hydrogen/Deuterium/Tritium Permeation Barrier Coatings for Nuclear Reactor Components
HUANG Hongtao*, LIU Yang, WANG Wang
Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, Guangdong, China
下载:  全 文 ( PDF ) ( 6173KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢原子及其同位素具有很小的半径、很强的渗透性,一旦渗透到反应堆结构部件材料中,会对材料造成不同程度的破坏,这将造成严重的经济损失,甚至引起严重的反应堆安全事故以及对环境的放射性污染。解决办法是在氢及其同位素的渗透路径上设置渗透屏障,在相关结构部件表面制备阻氢/氘/氚涂层。
然而,根据其使用目的和服役环境,对阻氢/氘/氚涂层的综合性能提出了较高的要求,阻氢/氘/氚涂层需具备高的渗透率降低因子(Permeation reduction factor,PRF)、好的自修复能力、好的抗热冲击性、低的活化特性、较好的抗辐照性能,以及与液态冷却剂的良好的相容性。此外,涂层制备工艺还需适应于反应堆复杂的结构部件并可具备工程化应用的特点。
氧化物及其复合涂层由于具有熔点高、化学性质稳定、制备工艺相对简单及阻氢性能良好等优点,成为阻氢/氘/氚涂层研究的热点,尤其是α- Al2O3涂层。热浸铝工艺(HDA)、包埋渗铝工艺(PC)和电化学沉积工艺(ECA)等制备α-Al2O3及其复合涂层已有工业化推广应用的实例,这三种方法将具有较强的规模推广可行性。氢同位素在涂层中的渗透机理研究主要围绕过程中的两个关键限制步展开:表面吸附、晶内扩散。材料表面对氢同位素的吸附机理体现在渗透压力指数(n)。氢同位素对金属的渗透压力指数为0.5,氢同位素被金属吸附后溶解为原子,然后氢原子在金属晶格中扩散迁移;而氢同位素对陶瓷的渗透压力指数为1,氢以分子态被吸附,并在陶瓷中以分子形式扩散。另外,辐照后Al2O3阻氢涂层的氘渗透测试PRF值变小,辐照导致Al2O3对氢同位素的渗透阻挡性能快速下降。
本文简要介绍了阻氢/氘/氚涂层的材料体系选择、制备工艺探索、涂层氢同位素渗透实验研究,氢同位素渗透机理及其辐照效应等方面的研究进展,指出了反应堆结构部件表面阻氢/氘/氚涂层研究发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄洪涛
刘阳
王旺
关键词:  氢同位素渗透  阻氢/氘/氚涂层  渗透机理  辐照效应    
Abstract: The atomic radius of hydrogen and its isotopes is very small, making them easy to diffuse and permeate in materials. Once they permeate into the materials of nuclear reactor components, they will cause significant damage to the materials, which can lead to serious economic loss and even serious reactor safety accidents and radioactive pollution. The solution is to set a permeation barrier on the permeation path of hydrogen and its isotopes, and to prepare a hydrogen/deuterium/tritium permeation barrier coating on the surface of the related nuclear reactor components.
According to the service environment of hydrogen/deuterium/tritium permeation barrier coatings, high requirements have been put forward for their performance. The coatings must have a high permeation reduction factor (PRF), self-healing ability, good thermal shock resistance, low irradiation activation, good radiation resistance, and good compatibility with liquid coolants. In addition, the coating should also be able to be easily prepared on the surface of the complex nuclear reactor components, with a potential for engineering applications.
Oxides and their composite coatings have many advantages, such as high melting point, stable chemical properties, relatively simple preparation process, and excellent hydrogen isotope permeation barrier properties; therefore, they have become a hot spot in the research field of hydrogen/deuterium/tritium permeation barrier coatings, especially α-Al2O3 coatings. The preparation processes of α-Al2O3 and its composite coatings by the hot-dip aluminizing (HDA), pack cementation (PC) and electrochemical deposition (ECA) have been reported in industrial application. All the three methods have good feasibility for large-scale production. Moreover, the research on the permeation mechanism of hydrogen isotopes mainly involves two key limiting steps in the process, surface adsorption and intragranular diffusion. The adsorption mechanism of hydrogen isotopes on the surface of coating materials is reflected in the permeation pressure index (n). n for hydrogen isotopes in metal materials is 0.5, indicating that hydrogen isotopes are dissolved into atoms, and then the hydrogen atoms diffuse in the metal lattice. It is found that n=1 for hydrogen isotopes in ceramic materials, indicating that hydrogen isotopes are adsorbed in a molecular state and diffuse in the ceramic in molecular form. In addition, the deuterium permeation test PRF value of Al2O3 coating becomes smaller after irradiation, and the hydrogen barrier performance of Al2O3 deteriorates rapidly due to the irradiation damage.
In this paper, we briefly introduce the latest research progress on the selection of hydrogen/deuterium/tritium permeation barrier coating mate-rials, the exploration of the preparation technology, details of the experimental research on the hydrogen isotope permeation of the coatings, and the hydrogen isotope permeation mechanism and its irradiation effect. The developing direction of using hydrogen/deuterium/tritium permeation barrier coatings on the surface of related nuclear reactor components is also highlighted.
Key words:  hydrogen isotope permeation    hydrogen/deuterium/tritium permeation barrier coating    permeation mechanism    irradiation effect
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TL352  
基金资助: 广东省基础与应用基础研究基金(2021B1515120014);国家自然科学基金(51601224)
通讯作者:  * 黄洪涛,中山大学中法核工程与技术学院一级副教授、博士研究生导师。2007年7月在东北大学材料与冶金学院获学士学位,2009年7月在东北大学材料与冶金学院获硕士学位,2013年在清华大学材料科学与工程系获工学博士学位。2013.03—2019.12在中国原子能科学研究院反应堆工程技术研究部历任助理研究员、副研究员、专业组长,兼任核工业大学副教授。主要从事阻氢/氘/氚涂层制备及性能评价技术、核能材料的辐照损伤及辐照效应的研究工作。在相关领域发表文章30余篇,包括Fusion Engineering and Design、Materials Characterization、Materials Letters、Materials Science and Engineering:A等。主持国家自然科学基金、国防基础科研计划项目、国防科技工业核材料创新基金等多个项目。huanghongtao401@163.com   
引用本文:    
黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
HUANG Hongtao, LIU Yang, WANG Wang. Complete Review and Prospects of Hydrogen/Deuterium/Tritium Permeation Barrier Coatings for Nuclear Reactor Components. Materials Reports, 2023, 37(7): 21050015-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050015  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21050015
1 Su Z T, Yang J C, Ke G T. Space nuclear power, Shanghai Jiao Tong University Press, China, 2016(in Chinese).
苏著亭, 杨继材, 柯国土. 空间核动力, 上海交通大学出版社, 2016.
2 Perujo A, Forcey K S. Fusion Engineering and Design, 1995, 28, 252.
3 Shan C Q. Tritium and tritium barrier materials, Atomic Energy Press, China, 2005(in Chinese).
山常起. 氚与阻氚渗透材料, 原子能出版社, 2005.
4 Yao Z, Hao J, Zhou C, et al. Journal of Nuclear Materials, 2000, 283, 1287.
5 Causey R A, Wampler W R. Journal of Nuclear Materials, 1995, 220, 823.
6 Nickel H, Koizlik K. Thin Solid Films, 1983, 108(4), 401.
7 Wu Y, He D, Zhang H, et al. Fusion Engineering and Design, 2015, 90, 105.
8 Levchuk D, Levchuk S, Maier H, et al. Journal of Nuclear Materials, 2007, 367, 1033.
9 Aiello A, Ciampichetti A, Benamati G. Journal of Nuclear Materials, 2004, 329, 1398.
10 Konys J, Krauss W, Holstein N. Fusion Engineering and Design, 2010, 85, 2141.
11 Wong C P C, Abdou M, Dagher M, et al. Fusion Engineering and Design, 2010, 85(7-9), 1129.
12 Singh K, Fernandes A, Paul B, et al. Fusion Engineering and Design, 2014, 89(11), 2534.
13 Kulsartov T V, Hayashi K, Nakamichi M, et al. Fusion Engineering and Design, 2006, 81, 701.
14 Nakamichi M, Kulsartov T V, Hayashi K, et al. Fusion Engineering and Design, 2007, 82, 2246.
15 Zhang K, Hatano Y. Fusion Engineering and Design, 2010, 85, 1090.
16 Yao Z, Suzuki A, Levchuk D, et al. Journal of Nuclear Materials, 2009, 386, 700.
17 Chikada T, Shimada M, Pawelko R J, et al. Fusion Engineering and Design, 2014, 89, 1402.
18 Yang H G, Zhan Q, Zhao W W, et al. Journal of Nuclear Materials, 2011, 417, 1237.
19 Zhan Q, Yang H G, Zhao W W, et al. Journal of Nuclear Materials, 2013, 442, 603.
20 Zhao W W, Yuan X M, Zhan Q, et al. In:Proceedings of the 2011 Annual Conference of the Chinese Nuclear Society (Volume 4). Beijing, China, 2011, pp. 230 (in Chinese).
赵崴巍, 袁晓明, 占勤, 等. 中国核学会2011年学术年会论文集第4册. 北京, 2011, pp. 230.
21 Zhan Q, Yang H G, Zhao W W, et al. Transactions of Materials and Heat Treatment, 2008, 29(2), 158 (in Chinese).
占勤, 杨洪广, 赵崴巍, 等. 材料热处理学报, 2008, 29(2), 158.
22 Wang J, Li Q, Cao J L, et al. International Journal of Hydrogen Energy, 2016, 41(2), 1326.
23 Li S, He D, Liu X, et al. Journal of Nuclear Materials, 2012, 420, 405.
24 He D, Li S, Liu X, et al. Fusion Engineering and Design, 2014, 89(1), 35.
25 Wu Y, He D, Zhang H, et al. Fusion Engineering and Design, 2015, 90, 105.
26 Zhang G K, Ju L, Chen C A, et al. Journal of Nuclear Materials, 2011, 417, 1245.
27 Zhang G K, Chen C A, Luo D L, et al. Fusion Engineering and Design, 2012, 87, 1370.
28 Yang F, Xiang X, Lu G, et al. Journal of Nuclear Materials, 2016, 478, 144.
29 Cao W, Ge S, Song J, et al. International Journal of Hydrogen Energy, 2016, 41(48), 23125.
30 Xiang X, Wang X, Zhang G, et al. International Journal of Hydrogen Energy, 2015, 40(9), 3697.
31 Gao J, Suo J. Surface and Coatings Technology, 2010, 204(23), 3876.
32 Gao J, Zhang D, Suo J. Fusion Engineering and Design, 2010, 85, 1618.
33 Wang Y, Feng S, Liu D, et al. Surface and Coatings Technology, 2017, 330, 277.
34 Zhang M, Xu B, Ling G. Applied Surface Science, 2015, 331, 1.
35 Zhang M, Chen C, Zhang G, et al. Physics Procedia, 2013, 50, 206.
36 Li Z L, Tao J, Liu H B, et al. Atomic Energy Science and Technology, 2008, 42(Z1), 217 (in Chinese).
李转利, 陶杰, 刘红兵, 等. 原子能科学技术, 2008, 42(Z1), 217.
37 Gao Q, Tao J, LuoX Y. Atomic Energy Science and Technology. 2008, 42(Z1), 212 (in Chinese).
高强, 陶杰, 骆心怡, 等. 原子能科学技术, 2008, 42(Z1), 212.
38 Liu H B. Preparation of oxide barrier tritium coating and its performance by plasma composite infiltration technology. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010 (in Chinese).
刘红兵. 等离子复合渗技术制备氧化物阻氚涂层及其性能研究. 博士学位论文, 南京航空航天大学, 2010.
39 Wang L, Yang J J, Feng Y J, et al. Journal of Nuclear Materials, 2017, 487, 280.
40 Wang L, Yang J, Liang C, et al. Fusion Engineering and Design, 2019, 143, 233.
41 Dong J, Sun Y, He F, et al. Materials Research Express, 2018, 6(3), 036409.
42 Dong J, Sun Y, Dou B, et al. In:TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Springer International Publishing, British, 2019, pp. 687.
43 Dong J, Kou B S, He F Y, et al. Surface Technology, 2019, 48(6), 221 (in Chinese).
董健, 窦炳胜, 贺飞羽, 等. 表面技术, 2019, 48(6), 221.
44 Sun Y, Dong J, Zhao P, et al. Surface and Coatings Technology, 2017, 330, 234.
45 Dong J, Sun Y, Dou B, et al. Surface and Coatings Technology, 2018, 354, 184.
46 Dong J, Sun Y, He F. Surface and Coatings Technology, 2019, 375, 833.
47 Oriani R A. In:Cold fusion source book, Springer Berlin Heidelberg, New York, USA, 1994.
48 Dushman S, Pierce J R. Physics Today, 1949, 2(7), 27.
49 Yang B, Xiong Q, Liu Y G, et al. Journal of Functional Materials, 2002, 33(2), 176(in Chinese).
杨斌, 熊器, 刘耀光, 等. 功能材料, 2002, 33(2), 176.
50 Wang X Y, Zou J S, Huang N K. Journal of Materials Protection, 2002, 35(2), 23 (in Chinese).
王小英, 邹觉生, 黄宁康. 材料保护, 2002, 35(2), 23.
51 Barth C, Reichling M. Nature, 2001, 414(6859), 54.
52 Emin D, Baskes M I. Physical Review Letters, 1979, 42(12), 791.
53 Ferriss D H, Turnbull A. Analysis of reversible and irreversible hydrogen trapping in metal, National Physical Laboratory, UK, 1988.
54 Hollenberg G W. In:3rd International Symposium on Fusion Nuclear Technology. Los Angeles, USA, 1995, pp. 780.
55 Song W H, Du J J. Nuclear Fusion and Plasma Physics, 1998, 18(3), 9 (in Chinese).
宋文海, 杜家驹. 核聚变与等离子体物理, 1998, 18(3), 9.
56 Hermann K, Michalak A, Witko M. Catalysis Today, 1996, 32, 321.
57 Chen M, Waghmare U V, Friend C M, et al. The Journal of Chemical Physics, 1998, 109(16), 6854.
58 Zhang G K. Theoretical studies on hydrogen behavior in α-Al2O3 tritium permeation barrier material. Ph. D. Thesis, University of Science and Technology of China, China, 2014 (in Chinese).
张桂凯. α-Al2O3阻氚涂层材料中氢行为的理论研究. 博士学位论文, 中国科学技术大学, 2014.
59 Shan C Q. China Nuclear Science and Technology Report. CNIC-00627, 1992 (in Chinese).
山常起. 中国核科技报告. CNIC-00627, 1992.
60 Liu S, Zheng H, Gui Q H, et al. Acta Metallurgica Sinica, 2004, 40(4), 393 (in Chinese).
刘实, 郑华, 贵全红, 等. 金属学报, 2004, 40(4), 393.
61 Levchuk D, Koch F, Maier H, et al. Journal of Nuclear Materials, 2004, 328, 103.
62 Takeda T, Iwatsuki J, Inagaki Y. Journal of Nuclear Materials, 2004, 326(1), 47.
63 Checchetto R, Miotello A, Tosello C, et al. Journal of Physics:Condensed Matter, 2002, 14(25), 6307.
64 Zhang W, Zhu C D, Yang J, et al. Surface and Coatings Technology, 2021, 423, 127616.
65 Lyu Y M, Xu Y P, Pan X D, et al. International Journal of Hydrogen Energy, 2019, 44(47), 25834
66 Yuan X M, Yang H G, Zhan Q. In:Proceedings of the Second China Tritium Science and Technology Symposium. Chengdu, China, 2017, pp.73 (in Chinese).
袁晓明, 杨洪广, 占勤. 第二届中国氚科学与技术学术交流会论文集. 成都, 2017, pp. 73.
67 Akiyoshi M, Yano T. Progress in Nuclear Energy, 2008, 50, 567.
68 Ibarra A, Muñoz-Martín A, Martín P, et al. Journal of Nuclear Mate-rials, 2007, 367, 1003.
69 Ackland G. Science, 2010, 327(5973), 1587.
70 Han W, Demkowicz M J, Mara N A, et al. Advanced Materials, 2013, 25(48), 6975.
71 Chen Y, Yu K Y, Liu Y, et al. Nature Communications, 2015, 6(1), 1.
72 He P, Yao W Z, Lyu J M. Materials Reports A:Review Papers, 2018, 32(1), 34 (in Chinese).
何培, 姚伟志, 吕建明, 等. 材料导报:综述篇, 2018, 32(1), 34.
[1] 朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚. 超导材料辐照效应的研究进展[J]. 材料导报, 2020, 34(15): 15116-15125.
[2] 王振林, 成来飞. 玻璃的辐照效应及耐辐照改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 94-99.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed