Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15116-15125    https://doi.org/10.11896/cldb.19070171
  金属及金属基复合材料 |
超导材料辐照效应的研究进展
朱红梅1, 李佐光1, 邱长军1, 毛哲华2, 秦经刚2
1 南华大学机械工程学院,衡阳 421001
2 中科院等离子体物理研究所,合肥 230031
Research Progress on Irradiation Effect of Superconducting Materials
ZHU Hongmei1, LI Zuoguang1, QIU Changjun1, MAO Zhehua2, QIN Jinggang2
1 School of Mechanical Engineering, University of South China, Hengyang 421001,China
2 Institute of Plasma Physics, CAS, Hefei 230031, China
下载:  全 文 ( PDF ) ( 2936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超导材料由于具有一系列的优异特性如零电阻效应、迈斯纳效应、约瑟夫森效应等,已逐渐应用在信息能源、电力交通、科学仪器、医疗技术、国防军事等重要领域,有力推动了国民经济和人类社会的发展。目前,超导材料在强磁场、强辐射、超低温等极端环境下的辐照效应是国内外研究者们普遍关注的热点。在高能粒子轰击作用下,超导材料晶格中的原子发生一系列的碰撞,从而产生大量的辐照缺陷(如离位峰、贫原子区、空位、间隙原子、位错、空洞)、缺陷团以及新的析出相,这些对其超导性能(临界温度TC、临界磁场HC、临界电流IC以及临界电流密度JC等)存在显著影响。
本文全面综述了不同超导材料辐照效应的国内外研究进展。按临界温度TC分类,超导材料可分为低温超导材料(TC<25 K,主要有NbTi、Nb3Sn和Nb3Al)和高温超导材料(TC>25 K,主要有铋系、钇系、MgB2以及铁基超导材料)。重点综述了辐照源(包括中子、离子(He、B、C、O、Ne、Si、Ar、Ti、Ni、Xe、Au、Pb等)、质子、电子以及射线(γ、χ射线))、辐照条件(能量、剂量、温度)、超导材料的初始状态、掺杂(MgO、B、Sn、Ag等)等因素对其超导性能的影响。大量研究表明,超导材料经辐照后可引入缺陷,磁通钉扎强度和密度增大,临界电流密度JC得到改善;此外,增加超导材料中的载流子或改善晶体的有序化可提高其临界温度TC。最后,针对当前超导材料亟待解决的一些关键问题,提出了通过优化材料体系及其制备工艺、热处理、掺杂以及数值模拟与实验相结合等方式改善其辐照效应的技术途径,为超导材料的研究开发和商业化应用提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱红梅
李佐光
邱长军
毛哲华
秦经刚
关键词:  超导材料  辐照效应  缺陷  超导性能    
Abstract: Due to a series of excellent characteristics, such as zero resistance effect, Meisner effect and Josephson effect. Superconducting materials have been gradually applied in important fields such as information energy, electric power and transportation, scientific instruments, medical technology, national defense and military, and strongly promotes the development of national economy and human society. Currently, the irradiation effects of superconducting materials in extreme environments such as strong magnetic field, strong radiation and ultra-low temperature are the main focus of researchers at home and abroad. Under the irradiation of high-energy particles, a series of collisions occur between atoms in the lattice of superconducting materials. This will produce a large number of irradiation defects (such as off-peak, depleted-atom region, vacancies, interstitial atoms, dislocations, vacancies), defect clusters and new precipitates. These have significant effects on the superconductivity (including critical temperature TC, critical magnetic field HC, critical current IC and critical current density JC, etc.).
In this paper, the research progress of irradiation effects of different superconducting materials at home and abroad is reviewed comprehensively. According to the critical temperature TC, superconducting materials can be classified into low-temperature superconducting materials (TC<25 K, mainly including NbTi, Nb3Sn and Nb3Al) and high-temperature superconducting materials (TC>25 K, mainly including bismuth-based, yttrium-based, MgB2 and iron-based superconducting materials). The effects of irradiation sources (such as neutrons, ions (He, B, C, O, Ne, Si, Ar, Ti, Ni, Xe, Au, Pb, etc.), protons, electrons and rays (γ,χ rays), irradiation conditions (energy, dose, temperature), initial state of superconducting materials, and doping (MgO, B, Sn, Ag, etc.) on their superconductivity are mainly reviewed. Most of studies have shown that, defects can be introduced into superconducting materials after irradiation, and the critical current density JC can be improved with the increase of magnetic flux pinning strength and density. In addition, the critical temperature TC of superconducting materials can be increased by increasing the carriers in superconducting materials or improving the ordering of crystals. Finally, in terms of some key problems need to be solved in the current superconducting material, some technical approaches are proposed in this article, such as optimizing the material system and its preparation process, heat treatment, doping and combination numerical simulation with experimental investigation. This article can provide ideas for the research,development and commercial application of superconducting materials.
Key words:  superconducting materials    irradiation effect    defect    superconductivity
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TM26  
基金资助: 国家重点研发计划项目(2017YFE0301404)
通讯作者:  qiuchangjun106@126.com;qinjg@ipp.ac.cn   
作者简介:  朱红梅,博士,副教授,硕士研究生导师。2011年6月毕业于华南理工大学材料加工工程专业,先后公派留学于澳大利亚悉尼大学18个月,公派访学于美国普渡大学一年。现任南华大学金属材料与微制造研究所所长,中国机械工程学会表面工程分会青年工作委员会委员,主要从事核装备金属材料安全服役及表面改性技术方面的研究。目前主持国家、省、市厅级自然科学基金项目共8项,以第一作者/通讯作者身份发表SCI/EI论文20余篇。
邱长军,博士,教授,博士研究生导师。2003年6月于中南大学机电工程学院获得博士学位。现任湖南省重点学科机械工程学科带头人,核能装备及其安全服役技术湖南省高校科技创新团队带头人,特殊环境下装备安全服役技术湖南省高校重点实验室主任。长期从事核设施安全工程与退役治理技术、核装备金属材料安全服役及表面改性技术,先后主持国家自然科学基金重大研究计划项目1项、面上项目3项,国家科技重大专项子项1项。在国内外高影响因子刊物发表论文100余篇。
秦经刚,博士,研究员,博士研究生导师。2012年获中国科学院研究生院核能科学与工程工学博士学位。中国科学院青年创新促进会优秀会员,“万人计划”青年拔尖人才。现任中国科学院等离子物理研究所应用超导工程技术研究室副主任。一直从事大型铠装超导导体的研究,重点开展国际热核聚变实验堆(ITER)用超导电缆与不锈钢铠甲的研究,以及未来高场应用的新型铠装导体的研究,探索以新结构、新材料为基础的导体技术。先后主持国家自然科学基金青年项目、面上项目,国家磁约束聚变能研究发展专项,ITER国际合作项目(ITER PF/TF/CC/Feeder导体研制)等。以第一/通讯作者发表SCI 收录源论文30余篇,发明专利12 件,主持/参与编制核聚变相关标准5项。
引用本文:    
朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚. 超导材料辐照效应的研究进展[J]. 材料导报, 2020, 34(15): 15116-15125.
ZHU Hongmei, LI Zuoguang, QIU Changjun, MAO Zhehua, QIN Jinggang. Research Progress on Irradiation Effect of Superconducting Materials. Materials Reports, 2020, 34(15): 15116-15125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070171  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15116
1 Zhuang Y H.Superconductor physics,China University of Science and Technology,China,1997 (in Chinese).张裕恒. 超导物理, 中国科技大学出版社,1997.2 Wang Q L.Science of superconducting magnets with high magnetic field,Science Press, China,2008(in Chinese).王秋良. 高磁场超导磁体科学, 科学出版社,2008 .3 MuratovV, SaksaganskyGL,Filatov O G.Fundamentals of magnetic thermonuclear reactor design, Woodhead Publishing, UK,2018. 4 Xin Y.New Material Industry,2017(7),2(in Chinese).信赢. 新材料产业, 2017(7),2.5 Xia J W,Zhan W L,Wei B W,et al.Chinese Science Bulletin,2016, 61(Z1),467(in Chinese).夏佳文,詹文龙,魏宝文,等. 科学通报, 2016, 61(Z1),467.6 Wen H M,Yan L G,Lin L Z.Cryogenics and Superconductivity, 2016, 33(1),46(in Chinese).温华明,严陆光,林良真.低温与超导, 2016, 33(1),46.7 Wang J S, Wang S Y, Ren Z Y, et al.Physica C,2003,386, 431.8 Ma Y W.Physics, 2015, 44(10),674(in Chinese).马衍伟.物理, 2015, 44(10),674.9 Wang Z X .Nb-Ti superconducting alloy, Metallurgical Industry Press,China,1983(in Chinese).王中兴.铌-钛超导合金,冶金工业出版社,1983.10 Rogalla H,Kes P H (ed.). One hundred years of superconductivity, CRC press,New York,2011.11 Okada T, Hayashiuchi Y.Journal of Nuclear Materials,1978,72,177.12 Nardai F, Weber H W,Maix R K.Cryogenics,1981,21,223.13 Birtcher R C, Brown B S, Scott T L.Journal of Nuclear Materials,1981,97,337.14 Topchishvili L S.Journal of Nuclear Materials,1996,233-237,596.15 Topchishvili L S, Naskidashvili A I.Journal of Nuclear Materials,1999,271-272,505.16 Schmelz K,Ischenko G, Besslein B,et al.Physics Letters,1975,55A,315.17 Tsuji H, Egorov S, Minervini J,et al.Fusion Engineering and Design, 2001, 55 (2),141.18 Liang M, Zhang P X, Lu Y F,et al.Materials Reports,2006, 20(12),1(in Chinese).梁明,张平祥,卢亚锋,等.材料导报, 2006, 20(12),1.19 Bett R.Cryogenics,1974,14(7),361.20 Nishimura A,Takeuchi T, Nishijima S ,et al.AIP Conference Proceedings, 2010,1219, 255.21 Nishimura A, Takeuchi T, Nishijima S,et al.Fusion Engineering and Design,2009,84,1425.22 Nishimura A, Takeuchi T, Nishijima S,et al.Journal of Nuclear Mate-rials,2011,417,842.23 Colucci S L,Weinstock H, Brown B S.Applied Physics Letters, 1976,28(11),667.24 Colucci S L,Weinstock H,Suenaga M.Journal of Applied Physics, 1977,48(2),837.25 Baumgartner T,Eisterer M, Weber H W,et al.Superconductor Science and Technology,2013, 27(1), 015005.26 Brown B S, Blewitt T H, Scott T L,et al.Journal of Applied Physics,1974,49(7),4144.27 Flükiger R, Baumgartner T,Eisterer M,et al.IEEE Transactions on Applied Superconductivity, 2013,23(3),8001404.28 Degtyarenkoa P N, Ballarinob A, Botturab L,et al.Technical Physics Letters, 2017, 43(6),574.29 Spina T, Scheuerlein C, Richter D, et al.Journal of Physics: Conference Series,2014,507 (2),022035.30 Snead C L, Birtcher R C, Kirk M A,et al.Journal of Nuclear Materials,1997, 244,273.31 Wood E A,Compton V B,Matthias B T,et al.Acta Crystall,1958,11(9),604.32 Kuroda T,Katagiri K,Kodaka H,et al.Physica B,1996,216,230. 33 Nishimura A,Takeuchi T, Nishijima S,et al.AIP Conference Proceedings,2012,1435,217.34 Yamada Y, Murase S, Sasaki M,et al.Cryogenics,1986,26,615.35 Maeda H,Tanaka Y,Fukutomi M,et al.Japanese Journal of Applied Phy-sics,1988,27,L209.36 Elschner S, Breuer F,Wolf A,et al.IEEE Transactions on Applied Superconductivit,2001,11(1),2507.37 Jin J R,Chen W M,Jin X,et al.Acta Physica Sinica,1992,41(5),846(in Chinese).金继荣,陈武鸣,金新,等.物理学报, 1992,41(5),846.38 Mohiju Z A,Hamid N A, Abdullah Y.AIP Conference Proceedings,2017,1799,040004.39 Ali M A,Jasim K A.Energy Procedia, 2019,157,143.40 Kazumata Y,Okayasu S, Kumakura H,et al.Physica C,1994, 235-240,2825.41 Chikumoto N, Konczykowski M, Kimura T,et al.Physica C,1994,235-240,2867.42 Chikumoto N, Konczykowski M,Shimoyama J,et al.Physica B, 2000,284-288,879.43 Panarina N, Bizyaev D, Petukhov V,et al.Physica C, 2010,470,251.44 Ghosh A, Greene G A.AIP Conference Proceedings,2012,1435,346.45 Hamid N A, Abdullah Y, Razif S K M,et al.AIP Conference Proceedings, 2013, 1528,288.46 Bednorz J G,Müller KA Z.Zeitschrift für Physik B Condensed Matter, 1986,64(2),189. 47 Wu M K,Ashburn J R, Torng C J,et al.Physical Review Letter,1987, 58,908. 48 Xu W C, Bai Y L, Fang J H,et al.Materials Reports B:Research Papers,2013, 27(6),37(in Chinese).徐琬琛, 柏跃玲, 方建慧,等.材料导报:研究篇, 2013, 27 (6),37.49 Shao B, Liu A, Ren H,et al.Materials Research Bulletin,1992,27(1),15.50 Sauerzopf F M, Werner M, Weber H W,et al.Physica C, 1997,282-287,1333. 51 Jin J R,Jin X,Zhang Y T,et al.Nuclear Technology,1992,15(9),548(in Chinese).金继荣,金新,张贻瞳,等.核技术,1992,15(9),548.52 Li J Z,Liu Y T,Xiao H W,et al.Atomic Energy Science and Technology,1999,33(3),219(in Chinese).李际周,刘蕴韬,肖红文,等.原子能科学技术,1999,33(3),219.53 Li J Z,Kang J,Xiao L,et al.Atomic Energy Science and Technology,1993,27(6),527(in Chinese).李际周,康健,肖玲,等.原子能科学技术,1993,27(6),527.54 Leonard K J, List Lii F A, Aytug T,et al.Nuclear Materials and Energy, 2016,9,251.55 Topal U, Dorosinskii L, Ozkan H,et al.Physica C, 2003, 388-389,401.56 Li S L,Wen H H.Physics, 2001, 30(2),68(in Chinese).李世亮, 闻海虎.物理, 2001, 30(2),68.57 Peng Z L,Jiang C Z,Fan X J,et al.Journal of Wuhan University,1993(3),121(in Chinese).彭志林,蒋昌忠,范湘军,等.武汉大学学报,1993(3),121.58 Pedarnig J D, Bodea M A, Steiger B,et al.Physics Procedia,2012, 36,508.59 Vovk R V, Khadzhai G Y, Dobrovolskiy O V.Solid State Communications, 2018, 282,5.60 Albiss B A,Hamdan N,Menard A,et al.Solid State Communications, 1993,88(3),237.61 Aksennova T I,Berdauletov A K,Daukeev D K.Radiation Physics and Chemistry 1995,46(4-6),533.62 Kuroda Y, KoshimizuM,Fujimoto Y,et al.Nuclear Instruments and Methods in Physics Research B, 2018,435,194.63 Nagamatsu J,Nakagawa N,Muranaka T.Nature,2001,410,63.64 Iwasa Y,Larbarbalestier D C,Okada M,et al.IEEE Transactions on Applied Superconductivity,2006,16, 1457.65 Fu Y, Zhang S, Wu Y P, et al.Material Reports A:Review Papers,2013, 27(6),19(in Chinese).付尧, 张松, 吴燕平, 等.材料导报:综述篇, 2013, 27(6),19.66 Wilke R H T,Samuely P,Szab Ó P,et al.Physica C, 2007,456,108.67 Zehetmayer M,Krutzler C, Eisterer M,et al.Physica C,2006,445-448, 65.68 Tarantini C, Aebersold H U, BerniniC,et al.Physica C, 2007, 463-465,211.69 Tarantini C,Affronte M,Ferdeghini C,et al.Physica C, 2007,460-462,560.70 Capua R D, Salluzzo M, Vaglio R,et al.Physica C, 2007,460-462,574.71 Wang Y B,Xue C,Feng Q R.Acta Physica Sinica, 2012,61(19),1974011(in Chinese).王银博,薛驰,冯庆荣.物理学报, 2012,61(19),1974011.72 Chikumoto N,Yamamoto A, Konczykowski M,et al.Physica C, 2002, 378-381,466.73 Chikumoto N, Yamamoto A, Konczykowski M,et al.Physica C,2003,388-389,167.74 Okayasu S,Sataka M,Ikeda H,et al.Physica C, 2005,426-431,360.75 Talapatra A,Bandyopadhyay S K,Sen P,et al.Solid State Communications, 2005,134,385.76 Talapatra A,Bandyopadhyay S K, Nambissan P M G,et al.Physics Letters A,2008, 372,1521.77 Kaushik S D,Kumar R, Mishra P K,et al.Physica C, 2006,442,73.78 Kumar R,Agrawal H M, Kushwaha R P S,et al.Nuclear Instruments and Methods in Physics Research B,2007,263,414.79 Konduru P, Singh A V P,Kandasami A,et al.Nuclear Instruments and Methods in Physics Research B ,2019,438,42.80 Sandua V,Craciunb L,Ionescu A,et al.Physica C,2016,528,27.81 Mezzetti E, Botta D, Cherubini R,et al.Physica C, 2002,372-376,1277.82 Okayasu S, Ikeda H,Yoshizaki R.Physica C, 2002,378-381,462.83 Okayasu S, Sasase M, Hojou K,et al.Physica C, 2002,382,104.84 Sekkina M M A,Elsabawy K M.Physica C,2002,377,411.85 Kamihara Y, Watanabe T, Hirano M,et al.Journal of the American Chemical Society, 2008,130,3296. 86 Ren Z A, Lu W, Yang J, et al.Chinese Physics Letters, 2008, 25(6),2215.87 Nakajima Y, Tsuchiya Y, Taen T,et al.Physica C, 2010,470,1103.88 Yagyuda H, Nakajima Y, Tamegai T,et al.Physica C, 2011,471,790.89 Taen T, Yagyuda H, NakajimaY,et al.Physica C, 2013,484,6.90 Ohtake F, Taen T, Pyon S,et al.Physica C, 2015,518,47.91 Daghero D, Tortello M, Gozzelino L,et al.Applied Surface Science, 2017,395,9.92 Nakajima Y, Tsuchiya Y,Taen T,et al.Physica C,2011,471,647.93 Taen T, Nakajima Y, Tamegai T,et al.Physica C,2011,471,784.94 Taen T,Ohori T, Ohtake F,et al.Physica C, 2013,494,106.95 Salem-Sugui Jr S,Moseley D, Stuard S J,et al.Journal of Alloys and Compounds,2017, 694,1371.96 Giorgi A L, Stewart G R,Szklarz E G.Solid State Communications,1981,40,233.97 Ahmed S, Nawazish A K, Mumtaz M,et al.Radiation Physics and Che-mistry, 2015, 112,145.98 Akduran N.Radiation Physics and Chemistry, 2013,83,61.
[1] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[2] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[3] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[4] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[5] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[6] 陈怡, 邹文兵, 郭龙涛, 杨春利. 铸造镁合金的焊接修复技术研究现状及发展方向[J]. 材料导报, 2020, 34(15): 15126-15131.
[7] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[8] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[9] 王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
[10] 王冰. 铁素体不锈钢表面的拉丝缺陷[J]. 材料导报, 2019, 33(Z2): 460-462.
[11] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[12] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[13] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[14] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[15] 刘刚铄, 戴树玺, 高亚鸽, 顾玉宗. 缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙[J]. 材料导报, 2019, 33(19): 3219-3226.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed