Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14209-14213    https://doi.org/10.11896/cldb.19070028
  高分子与聚合物基复合材料 |
含缺陷三维编织复合材料拉伸性能试验
梁双强1, 陈革1, 2, 周其洪1, FrankKo3
1 东华大学机械工程学院, 上海 201620
2 新疆大学纺织服装学院, 乌鲁木齐 830046
3 英属哥伦比亚大学材料工程系, 加拿大温哥华 V6T1Z4
Tensile Property Test of 3D Braided Composites with Defects
LIANG Shuangqiang1, CHEN Ge1, 2, ZHOU Qihong1, Frank Ko3
1 College of Mechanical Engineering,Donghua University, Shanghai 201620, China
2 College of Textile and Clothing, Xinjiang University, Urumchi 830046, China
3 Department of Material Engineering, University of British Columbia, Vancouver V6T1Z4, Canada
下载:  全 文 ( PDF ) ( 5774KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究缺陷对三维编织复合材料力学性能的影响,测试了两种纤维增强三维编织复合材料(一种为完全编织结构,另一种含有42%的垂纱结构)含缺陷和不含缺陷时的拉伸性能。根据ASTM D3039 和 D5799标准分别对无缺陷、含缺陷试验件进行准静态拉伸试验,并与层合板的拉伸性能进行对比。结果表明:无论是否含有缺陷,完全编织结构的三维编织复合材料拉伸强度均接近于含垂纱结构;相对于层合板结构,引入缺陷后,两种结构的三维编织复合材料均保留更高的拉伸强度;失效形式上,含缺陷时,两种结构均表现出裂纹沿缺陷扩展,最终样品失效;无论是否含有缺陷,不含垂纱编织结构的失效样品一般具有清晰的断裂裂纹,而含垂纱编织结构的断裂裂纹不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁双强
陈革
周其洪
FrankKo
关键词:  缺陷  三维编织复合材料  拉伸强度  失效    
Abstract: In order to study the defect effect on three dimensional (3D) braided composite, two types of 3D braided specimens involved the defect were fabricated and tested. One was the pure braided pattern, the other one incorporated 42% of longitudinal lay-in yarns. A quasi-static tensile strength test was carried out for test parts with and without defects in accordance with ASTM D3039 and D5799, respectively, which was compared with laminates. The results showed that with or without defect, the pure braided 3D composites have higher strength than lay-in structure, the lay-in longitudinal yarns improve neither specimens nondefective strength, nor the defective strength. The both two types of 3D braided composites can retain higher proportion of tensile strength in comparison with laminates after involved the defect. Regarding the failure behavior, crack of both defective specimens will propagate along the defect and finally render the specimen fail, clear cracks usually show up on the samples without axial yarns, while not for the specimens with axial yarns.
Key words:  defect    3D braided composite    tensile strength    failure
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TB332  
作者简介:  梁双强,东华大学在读博士研究生。在国内外学术期刊发表论文6篇,申请国家发明专利4项,其中授权国家发明专利2项。研究工作主要围绕先进纺织复合材料工艺,复合材料性能预测和失效分析。
陈革,东华大学教授,博士研究生导师。2001年获博士学位,留校任教。2002—2003年借调教育部科技司工作;2005—2006年在美国佐治亚理工学院从事博士后研究。研究方向为机械设计及理论、新型纺织机械、机电一体化技术。先后主持国家自然科学基金项目、教育部重点项目、上海市科技攻关计划项目、上海市优秀技术带头人计划项目。
引用本文:    
梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
LIANG Shuangqiang, CHEN Ge, ZHOU Qihong, Frank Ko. Tensile Property Test of 3D Braided Composites with Defects. Materials Reports, 2020, 34(14): 14209-14213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070028  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14209
1 Macander A B, Crane R M, Camponeschi E T. In: ASTM International Seventh Conference on Composite Materials Testing and Design. Philadelphia, 1986, pp.1523.
2 Gause L W, Alper J M. Journal of Composites, Technology and Research, 1987, 9(4), 141.
3 Ko F K. In:ASTM International Seventh Conference on Composite Materials Testing and Design. Philadelphia, 1986, pp.986.
4 Ko F K. Textile Structural Composites, Elsevier Science Publishers, Ne-derland, 1989.
5 Ohki T, Ikegaki S, Kurasiki K, et al. Journal of Engineering Materials and Technology, 2000, 122(4), 420.
6 Tate J S, Kelkar A D, Bolick R. In:American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition. Philadelphia, 2004.
7 Hwan C L, Tsai K H, Chen W L, et al. Journal of Composite Materials, 2011, 45(19), 1991.
8 Chen L, Liang Z Q, Ma Z J, et al. Journal of Materials Engineering, 2005(8), 3(in Chinese).
陈利, 梁子青, 马振杰,等. 材料工程, 2005(8), 3.
9 Portanova M. Tension and compression fatigue response of unnotched 3D braided composites, NASA(non Center Specific),1992.
10 Carvelli V, Pazmino J, Lomov S V, et al. Journal of Composite Mate-rials, 2012, 47(25), 3195.
11 Zhang D, Zheng X T, Yang C. Acta Materiae Compositae Sinica, 2016, 33(5), 1048(in Chinese).
张迪, 郑锡涛, 杨超. 复合材料学报, 2016, 33(5), 1048.
12 Fang G D, Liang J, Wang B L. Composite Structures, 2009, 89(1), 126.
13 Su Z C, Tay T E, Ridha M, et al. Composite Structures, 2015, 122, 507.
14 Dai S, Cunningham P R, Marshall S, et al. Composite Structures, 2015, 131, 765.
15 Hua C T, Chu J N, Ko F K. In:ASTM International Seventh Conference on Composite Materials Testing and Design. Philadelphia, 1992, pp.352.
16 ASTM, D 3039/D 3039M-11. Standard test method for tensile properties of polymer matrix composite materials, ASTM International, West Conshohocken, PA, 2011.
17 ASTM, D 5766/D 5766M-11. Standard test method for open hole tensile strength of polymer matrix composite laminates, ASTM International, West Conshohocken, PA, 2011.
18 Lekhnitskii S G. Anisotropic plates, Foreign Technology Div Wright-Patterson, US,1968.
[1] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[2] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[3] 陈志凯, 关婷婷, 李强, 王井, 员霄. 激光淬火40Cr钢的冲击磨损行为研究[J]. 材料导报, 2020, 34(Z2): 407-411.
[4] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[5] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[6] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[7] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[8] 李宵波, 张盼盼, 何亚鹏, 黄惠, 郭忠诚. 铅酸电池负极添加剂的研究进展[J]. 材料导报, 2020, 34(5): 5039-5047.
[9] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[10] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[11] 邹田春, 秦嘉徐, 李龙辉, 符记, 刘志浩, 牟浩蕾. 钛合金-芳纶纤维复合材料单搭接接头渐进失效分析[J]. 材料导报, 2020, 34(20): 20143-20146.
[12] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[13] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[14] 王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
[15] 朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚. 超导材料辐照效应的研究进展[J]. 材料导报, 2020, 34(15): 15116-15125.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed