Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5039-5047    https://doi.org/10.11896/cldb.19010081
  无机非金属及复合材料 |
铅酸电池负极添加剂的研究进展
李宵波1,2, 张盼盼1,2, 何亚鹏1,2, 黄惠1,2,3, 郭忠诚1,2,3
1 昆明理工大学冶金与能源工程学院,昆明 650093;
2 云南省冶金电极材料工程技术研究中心,昆明 650106;
3 昆明理工恒达科技股份有限公司,昆明 650106
Research Progress in Negative Additives for Lead-acid Batteries
LI Xiaobo1,2, ZHANG Panpan1,2, HE Yapeng1,2, HUANG Hui1,2,3, GUO Zhongcheng1,2,3
1 College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2 Research Center of Metallurgical Electrode Materials Engineering Technology, Yunnan Province, Kunming 650106, China;
3 Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 5648KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,环境污染与化石能源日益匮乏,使得储能设备不断发展更新。电池作为新型储能设备在能源供给方面占有一定的优势。目前二次电池市场中使用最广泛的主要还是锂离子电池及铅酸电池。锂电池具有能量密度高、体积小等优点,有超越铅酸电池的趋势,但因低温容量衰减严重、高温易爆炸等缺点导致其使用受到一定的限制。而铅酸电池具有使用温度范围较宽、安全可靠以及售价低廉等优势,在工业使用方面更具有普遍性。
  铅酸电池在使用过程中也存在失效问题。目前铅酸电池失效模式主要起源于正负极早期容量损失、板栅腐蚀以及负极硫酸盐化等。作为混合动力汽车常用的动力来源,铅酸电池需在高倍率放电部分荷电状态(HRPSoC)下运行,此时,决定电池寿命的主要因素是负极是否失效。负极失效使得电池性能急剧下降、寿命缩短,而铅酸电池负极添加剂能够在不同程度上解决负极失效问题。
  本文对铅酸电池常用的负极添加剂的研究发展概况和存在的问题进行了阐述,并对其进行了展望。铅酸电池负极添加剂主要包括碳材料、导电聚合物、无机或金属氧化物等,可以提高电池负极活性物质(NAM)的利用率,改善大电流放电、低温充放电、快速充电等性能。同时碳、聚苯胺、无机或金属氧化物等材料的加入能够分担铅酸电池负极的部分充电电流,减缓大电流对负极的冲击、抑制负极铅硫酸盐化、提高电池高倍率放电部分荷电状态循环寿命、降低负极放电深度、升高电池析氢电位、降低电池失水。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宵波
张盼盼
何亚鹏
黄惠
郭忠诚
关键词:  铅酸电池  失效机制  负极添加剂  电池性能    
Abstract: In recent years, the environmental pollution and scarcity of fossil energy have led to the continuous development and updation of energy sto-rage equipment. As a new energy storage device, the battery has many advantages in the energy supply. At present, the lithium ion batteries and lead-acid batteries are the most widely used in the secondary battery market. Correspondingly, lithium ion batteries have the advantages of high energy density and low volume and a tendency to surpass lead-acid batteries. However, there are obvious limitations for lithium ion batteries due to the serious attenuation of low-temperature capacity and high-temperature explosion, and the reliability over wide temperature range and low price of lead-acid batteries make them more versatile in the energy industries.
  The mainly failure modes of lead-acid battery are related to the early capacity loss of positive and negative plates, grid corrosion and lead sulfate sulphation at negative plate. As the common power source for hybrid vehicles, the lead-acid battery needs to be operated at high-rate partial state of charge (HRPSoC) state, where the factor determining the life mainly stems from the invalidation of the negative electrode. The invalidation of the negative plate would result into sharp drop in battery performance and shortened life, and negative additives could solve the negative plate failure problems in different aspects to a certain extent.
  In this review, recent progress on the study of negative additives for lead-acid battery and existing problems are summarized while the future development tendency is also forecasted. Typical negative additives, which primarily contain carbon materials, conducting polymer, inorganic or metal oxides, could enhance the utilization rate of negative electrode active material (NAM), improve the discharge performance under large current and low temperature situations, and so on. Meanwhile, negative conducting additives could participate part of charge current to slow down the adverse impact under large current. Furthermore, failure mechanism of negative plate including lead sulfation, cycle stability, electrolyte loss could be solved to some extent. Meantime, the disadvantages of the negative additives are also discussed in the review.
Key words:  lead-acid battery    failure mechanism    negative additives    battery performance
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51504111;51564029);中国博士后科学基金 (2018M623418);昆明理工大学分析测试基金 (2018M20172102038)
通讯作者:  huihuanghan@kmust.edu.cn   
作者简介:  李宵波,2017年6月毕业于兰州理工大学,获工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,目前主要研究领域为储能电极材料;黄惠,教授,博士研究生导师,现任昆明理工恒达科技股份有限公司技术总监、云南省冶金电极材料工程技术研究中心副主任。2000年毕业于四川大学化学学院高分子专业,获学士学位; 2006年7月毕业于云南大学材料科学学院无机材料专业,获硕士学位;2010年3月毕业于昆明理工大学冶金与能源工程学院冶金物理化学专业,获博士学位; 2014—2015年在美国弗罗里达大学做访问学者。现主要从事导电高分子新型节能阳极材料、特种功能粉体材料、冶金电化学及湿法冶金新材料等领域的研究开发及成果转化应用。目前,申请授权国家发明专利21件,出版学术专著3部,发表学术论文47篇,其中SCI、EI等收录35篇。获中国有色金属工业科学技术奖一等奖1项,云南省自然科学奖三等奖1项,云南省科学技术发明奖三等奖1项。 云岭产业技术领军人才、云南省中青年技术创新人才及昆明市中青年学术与技术带头人等称号;郭忠诚,教授,博士研究生导师,现任昆明理工恒达科技股份有限公司董事长兼总经理、云南省冶金电极材料工程技术研究中心主任、中国表面工程协会理事、中国表面工程协会电镀分会常务理事等。1987年于昆明理工大学冶金系有色金属冶金专业获学士学位, 2001年于昆明理工大学冶金系有色金属冶金专业获博士学位。1998年和2006年前往澳大利亚Monash大学材料系和英国Manchester大学腐蚀与防护研究中心作访问学者。主要从事冶金物理化学、冶金新材料、表面工程、材料物理化学等领域的研究开发及成果转化应用。获国家发明专利27件和省部级科技成果奖励7项,出版专著8部,发表学术论文200多篇,其中SCI、EI等收录80多篇;荣获教育部全国百篇优秀博士学位论文奖,获中国有色金属工业科学技术奖一等奖2项,二等奖2项,中国发明协会发明创业奖特等奖1项。 国家万人计划(国家创新创业人才),国家级新世纪百千万人才工程,教育部新世纪优秀人才支持计划获得者,云南省政府特殊津贴获得者,云南省中青年学术与技术带头人等称号。
引用本文:    
李宵波, 张盼盼, 何亚鹏, 黄惠, 郭忠诚. 铅酸电池负极添加剂的研究进展[J]. 材料导报, 2020, 34(5): 5039-5047.
LI Xiaobo, ZHANG Panpan, HE Yapeng, HUANG Hui, GUO Zhongcheng. Research Progress in Negative Additives for Lead-acid Batteries. Materials Reports, 2020, 34(5): 5039-5047.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010081  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5039
1 Zhang Y Y. Study on carbon nanometer conductive agent for lead carbon batteries. Master’s Thesis, Chongqing University, China, 2017(in Chinese).
张艳艳. 铅碳电池碳纳米导电剂的研究. 硕士学位论文, 重庆大学, 2017.
2 He H B. Chinese Journal of Power Sources, 2017, 41(10), 1455(in Chinese).
何海斌.电源技术, 2017, 41(10), 1455.
3 Lam L T, Louey R, Haigh N P, et al. Journal of Power Sources, 2007, 174(1), 16.
4 Huang B B. Research on plate polarization of VRLA batteries and its fai-lure modes. Master’s Thesis, Fuzhou University, China, 2014(in Chinese).
黄彬彬. VRLA电池极板极化及失效模式研究. 硕士学位论文, 福州大学, 2014.
5 Moseley P. Journal of Power Sources, 2004, 59(1-2), 191.
6 Guo Y, Hu J, Huang M. Journal of Power Sources, 2006, 158(2), 991.
7 Rice D M, Manders J E. Journal of Power Sources, 1997, 67(1), 251.
8 Lin X P, Guo Y L. Chinese Labat Man, 2008, 45(1), 5(in Chinese).
林雪平, 郭永榔. 蓄电池, 2008, 45(1), 5.
9 Zheng S, Jia F C. Chinese Journal of Power Sources, 2013, 37(7), 1271(in Chinese).
郑舒, 贾丰春. 电源技术, 2013, 37(7), 1271.
10 Huang B, Wang D L, Shang X L. Chinese Labat Man, 2017, 54(1), 23(in Chinese).
黄镔, 王殿龙, 尚晓丽. 蓄电池, 2017, 54(1), 23.
11 Pavlov D, Rogachev T, Nikolov P, et al. Journal of Power Sources, 2009, 191(1), 58.
12 Jia F N. Influence of carbon additive on the performance of lead-acid battery negative plate. Master’s Thesis, Harbin Institute of Technology, China, 2013(in Chinese).
贾方娜. 碳添加剂对铅酸电池负极性能影响的研究. 硕士学位论文, 哈尔滨工业大学, 2013.
13 Yang J. Research on failure modes and modification of lead-acid batte-ries. Master’s Thesis, Beijing University of Technology, China, 2017(in Chinese).
杨俊. 铅酸电池失效机理分析与改性研究. 硕士学位论文, 北京工业大学, 2017.
14 Chen X J. Modification and electrochemical properties of carbon material for anode of ultrabattery. Master’s Thesis, Central South University, China, 2011(in Chinese).
陈绪杰. 超级铅酸电池负极用炭材料的改性及电化学性能研究. 硕士学位论文, 中南大学, 2011.
15 Nakamura K, Shiomi M, Takahashi K, et al. Journal of Power Sources, 1996, 59(1-2), 153.
16 Vermesan H, Hirai N, Shiota M, et al. Journal of Power Sources, 2004, 133(1), 52.
17 Fu Y D. Study on the influence of different additives on the performance of lead acid battery negative electrode. Master’s Thesis, Central South University, China, 2011(in Chinese).
付颖达. 不同添加剂对铅酸电池负极性能影响的研究. 硕士学位论文, 中南大学, 2011.
18 Boden D P, Arias J, Fleming F A. Journal of Power Sources, 2001, 95(1-2), 277.
19 Chen X C.Chinese Battery Industry, 2008, 2, 5.
20 Bullock K R. Journal of Power Sources, 2010, 195(14), 4513.
21 Lam L T, Louey R. Journal of Power Sources, 2006, 158(2), 1140.
22 Wang L Z, Zhang K Q, Zhang L S, et al. Chinese Labat Man, 2012 (5), 198(in Chinese).
王力臻, 张凯庆, 张林森, 等. 蓄电池, 2012 (5), 198.
23 Yang H. Preparation of carbon-based composhes for the negative plate of lead-acid batterirs and study on their mechnisms. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2017(in Chinese).
杨欢. 铅酸电池负极碳基复合材料的制备及其作用机理. 博士学位论文, 华中科技大学, 2017.
24 Ebner E, Burow D, Borger A, et al. Journal of Power Sources, 2013, 239,483.
25 Vinal G W. Storage Batteries, fourth ed., John Wiley & Sons, New York, USA, 1955.
26 Sadhasivam T, Park M J, Shim J Y, et al. Electrochimica Acta, 2019, 295,367.
27 Gao Y, Wan H, Xia Y, et al. ChemPlusChem, 2018, 83(12), 1119.
28 Shiomi M, Funato T, Nakamura K. Journal of Power Sources, 1997, 64(64), 147.
29 Zhu J S. Research on preparation of Pb-C composite anode and mechanism of carbon. Master’s Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
朱俊生. Pb-C电池负极制备及碳作用机理研究. 硕士学位论文,哈尔滨工业大学, 2011.
30 Pavlov D, Nikolov P. Journal of Power Sources, 2013, 242, 380.
31 Moseley P T. Journal of Power Sources, 2009, 191(1), 134.
32 Zhang W, Lin H, Lu H, et al. Journal of Materials Chemistry A, 2015, 3(8), 4399.
33 Yin J, Lin N, Zhang W, et al. Journal of Energy Chemistry, 2018, 27(6), 1674.
34 Zhang W L, Yin J, Lin Z Q, et al. Journal of Power Sources, 2017, 342, 183.
35 Xiang J, Ding P, Zhang H, et al. Journal of Power Sources, 2013, 241, 150.
36 Calábek M, Micka K, Krivák P, et al. Journal of Power Sources, 2006, 158(2), 864.
37 Yin J, Lin N, Lin Z, et al. Journal of Electroanalytical Chemistry, 2018, 832, 266.
38 Zou X, Kang Z, Shu D, et al. Electrochimica Acta, 2015, 151, 89.
39 Wang L, Zhang H, Cao G, et al. Electrochimica Acta, 2015, 186, 654.
40 Wang L, Zhang H, Zhang W, et al. Chemical Engineering Journal, 2018, 337, 201.
41 Zhang X, Zhang Z B, Xia S Z, et al. Chinese Labat Man, 2015, 52(2), 51(in Chinese).
张兴, 张祖波, 夏诗忠, 等. 蓄电池, 2015, 52(2), 51.
42 Boden D P, Loosemore D V, Spence M A, et al. Journal of Power Sources, 2010, 195(14), 4470.
43 Bacˇa P, Micka K, Krˇivík P, et al. Journal of Power Sources, 2011, 196(8), 3988.
44 Wang H, Liu Z, Liang Q, et al. Journal of Cleaner Production, 2018, 197, 332.
45 Shang H T, Yue L P, Yang X K, et al. Chemical Engineering & Equipment, 2014(9), 177(in Chinese).
商洪涛, 岳立平, 杨献奎, 等. 化学工程与装备, 2014(9), 177.
46 Fan M Q. Technology Outlook, 2015, 25(33), 65(in Chinese).
范美青. 科技展望, 2015, 25(33), 65.
47 Waidhas M, Mund K. Electrochemical Society Proceedings, 2002, 96(25), 180.
48 Li D, Huang J, Kaner R B. Accounts of Chemical Research, 2008, 42(1), 135.
49 Wu C G, Bein T. Science, 1994, 264(5166), 1757.
50 Yang R, Kang E W, Cui B, et al. Engineering Plastics Application, 2010, 38(5), 85(in Chinese).
杨蓉, 康二维, 崔斌, 等. 工程塑料应用, 2010, 38(5), 85.
51 Meng Q, Cai K, Chen Y, et al. Nano Energy, 2017, 36, 268.
52 Zhu Y, Murali S, Stoller M D, et al. Science, 2011, 332(6037), 1537.
53 Li J, Lai Y Q, Li J, et al. Materials Review, 2006, 20(12), 20(in Chinese).
李晶, 赖延清, 李颉,等. 材料导报, 2006, 20(12), 20.
54 Wang Q, Huang Y, Miao J, et al. Applied Surface Science, 2012, 258(24), 9896.
55 李新禄, 龙君君, 张艳艳,等. 中国专利, CN106953098 A, 2017.
56 王斌, 方明学. 中国专利, CN103199244 A, 2013.
57 Takayuki Funato, Kastuhiro Takahashi. USA patent, US5547783, 1996.
58 李庆余, 李泽胜, 王红强,等.中国专利, CN 101764264B, 2012.
59 Prengaman R D. JOM, 2001, 53(1), 36.
60 Liu Z H. The effects of carbon materials and polianilina on negative performance of ultrabattery. Master’s Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
刘志豪. 碳材料和聚苯胺对超级电池负极性能的影响. 硕士学位论文, 哈尔滨工业大学, 2012.
61 Dubal D P, Ayyad O, Ruiz V, et al. Chemical Society Reviews, 2015, 44(7), 1777.
62 Simon P, Gogotsi Y. Nature Materials, 2008, 7(11), 845.
63 Sun H, Cao L, Lu L. Energy & Environmental Science, 2012, 5(3), 6206.
64 Guan C, Xia X, Meng N, et al. Energy & Environmental Science, 2012, 5(10), 9085.
65 Yin Y, Liu C, Fan S. RSC Advances, 2014, 4(50), 26378.
66 Peng C, Zhang S, Jewell D, et al. Progress in Natural Science, 2008, 18(7), 777.
67 高军, 张焱, 杨勇,等. 中国专利, CN103022503A, 2013.
68 舒红群, 赵古龙, 潘志刚,等. 中国专利, CN105140474A, 2015.
69 Zhu S P, Wu Z Y, Gu L Z, et al. Chinese Battery Industry, 2012, 17(6), 358(in Chinese).
朱守圃, 吴战宇, 顾立贞, 等. 电池工业, 2012, 17(6), 358.
70 Wessling B, Posdorfer J. Electrochimica Acta, 1999, 44(12), 213.
71 Martha S K, Hariprakash B, Gaffoor S A, et al. Journal of Chemical Sciences, 2006, 118(1), 93.
72 Hariprakash B, Gaffoor S A. Journal of Power Sources, 2007, 173(1), 565.
73 Wu S X, Lv G J, Lie X Z, et al. Chinese Journal of Power Sources, 1998(5), 225(in Chinese).
吴三械, 吕国金, 聂旭中,等. 电源技术, 1998(5), 225.
74 Micka K, Calábek M, Baca P, et al. Journal of Power Sources, 2009, 191(1), 154.
75 Zhao L, Chen B, Wu J, et al. Journal of Power Sources, 2014, 248(7), 1.
76 Hariprakash B, Gaffoor S A, Shukla A K. Journal of Power Sources, 2009, 191(1), 149.
[1] 高军, 陈学能, 蔡跃宗, 黄连清, 林宏名, 杨勇. 活性炭对铅酸电池负极活性物质结构与性能的影响[J]. 材料导报, 2019, 33(20): 3347-3352.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed