Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3219-3226    https://doi.org/10.11896/cldb.18060003
  无机非金属及其复合材料 |
缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙
刘刚铄, 戴树玺, 高亚鸽, 顾玉宗
河南大学物理与电子学院,微纳光子材料与应用研究所,开封 475004
Defective States Structure: Key to the Special Properties and Applicationsof Graphene
LIU Gangshuo, DAI Shuxi, GAO Yage, GU Yuzong
Institute of Micro/Nano Photonic Materials and Applications, School of Physics and Electronics, Henan University, Kaifeng 475004
下载:  全 文 ( PDF ) ( 2419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯由于具有独特的二维结构和奇特的物理性能而受到广泛关注。研究者们发现,石墨烯在自身生长或与其他材料复合的过程中,能够产生各种形态的缺陷和化学官能团等依附位点,这些缺陷态结构对石墨烯及其复合材料的特殊性能和应用起着关键作用。
随着对缺陷石墨烯研究的深入,人们对石墨烯的结构缺陷进行了定义,分析了缺陷类型和产生原因,比较了有缺陷和无缺陷石墨烯材料的性能。研究发现,缺陷对石墨烯材料的性能有重要影响,使传统碳材料能够形成更多功能性材料。例如,利用缺陷石墨烯的疏松多孔性构造高性能吸附材料;利用缺陷石墨烯的高导电性构造高效能光电催化剂或电极活性材料;利用缺陷石墨烯大的比表面积使其作为生长基底构造棒状、颗粒状、花状等多层次形貌的复合材料;利用化学或物理手段对缺陷石墨烯进行可调控的功能化修饰,使其他材料借助石墨烯的高载流子迁移率和高导电性来加快其电荷转移,增强电荷的有效传输和光学性能;或者利用与半导体纳米量子点的复合打开缺陷石墨烯的能带结构,使其具有一定的带隙,这能够使石墨烯在电子电路元器件中具有更高的应用价值。石墨烯的结构特性决定着石墨烯复合材料的功能性及其应用,清晰地理解缺陷态结构对石墨烯基材料性能的影响,将有利于合理利用缺陷态对复合材料的形成和预期性能进行有目的的干预,以制备出具有特定性能和应用目标的功能性材料。
本文对近年来关于缺陷结构对石墨烯性能影响的研究成果进行了分析和总结,报道了除本征石墨烯之外一些掺杂类石墨烯和石墨烯基复合材料,分析了缺陷态结构为石墨烯基复合材料带来的新特性以及缺陷态所起的作用,以期能对石墨烯缺陷态结构的进一步研究、合理利用并构造缺陷石墨烯提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘刚铄
戴树玺
高亚鸽
顾玉宗
关键词:  石墨烯  氧化石墨烯  缺陷位点  复合材料  功能性    
Abstract: Thanks to the unique two-dimensional structure and novel physical properties, graphene has attracted extensive attention. Researchers have found that graphene can produce various morphological attachment sites such as defects and chemical functional groups in the process of its own growth or compounding with other materials. These defective structures play a critical role in the special performances and applications of graphene and its composites.
With the intensive study of defective graphene, the structural defects of graphene have been defined, the analyses of types and causes of defects, as well as the comparison in properties of graphene materials with and without defects have been carried out. It has been found that defects have an important effect on the performance of graphene materials, so that a variety of functionalities can be imparted to traditional carbon mate-rials. For example, high performance adsorption materials are constructed by utilizing the porous nature of defective graphene. High efficiency photocatalysts or electrode active materials are formed by using high conductivity of defective graphene. Defective graphene with large specific surface area can serve as substrate for the growth of multi-level morphology (rod-like, granular, flower-like) composites. By means of chemical or physical techniques, the defective graphene can be functionally modified, so that with the aid of graphene’s high carrier mobility and high conductivity, other materials can accelerate their charge transfer and enhance their effective charge transmission and optical properties. Moreover, the hybridization of quantum-dots and defective graphene results in an opened band structure with a certain band gap width, which enables graphene to have higher application value in electronic circuit components.
The functionality and application of graphene composites are determined by the structural properties of graphene. A clear understanding of the effect of defective structure on the properties of graphene-based materials will be conducive to the rational use of defective state to interfere in the formation and expected properties of composites, so as to prepare functional materials with specific properties and application objectives. In this paper, the research results of effect of defective structure on graphene properties in recent years are analyzed and summarized. Beside intrinsic graphene, some doped graphene and graphene-based composites are reported. The novel properties of graphene-based composites caused by defective structure and the role of defective state are analyzed. It is hoped that this paper can provide some references for further study, rational utilization and construction of defective graphene.
Key words:  graphene    graphene oxide    defect sites    composite materials    functionality
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TB33  
基金资助: 国家自然科学基金(61875053);河南省高校青年骨干教师(2015GGJS-023)
作者简介:  刘刚铄,2016年6月毕业于河南大学,获得工学学士学位。现为河南大学物理与电子学院硕士研究生,在顾玉宗教授的指导下进行研究。目前主要研究领域为非线性光学材料与器件。顾玉宗,河南大学物理与电子学院教授、博士研究生导师。1984年7月,河南大学物理系本科毕业,获学士学位;1990年7月,吉林大学固体物理硕士研究毕业,获理学硕士学位;2002年7月,中国科学院研究生院博士研究生毕业,获理学博士学位;2003年3月—2004年7月在上海交通大学从事博士后研究工作;2004年7月—2006年7月,日本分子科学研究所JSPS博士后。中国物理学会会员、美国光学学会会员、美国科学促进会特邀会员。主持和参与国家及省级科研项目10余项,在国际重要学术刊物上发表SCI论文100余篇。主要从事超快非线性光学材料及全光器件等研究工作。yzgu@vip.henu.edu.cn
引用本文:    
刘刚铄, 戴树玺, 高亚鸽, 顾玉宗. 缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙[J]. 材料导报, 2019, 33(19): 3219-3226.
LIU Gangshuo, DAI Shuxi, GAO Yage, GU Yuzong. Defective States Structure: Key to the Special Properties and Applicationsof Graphene. Materials Reports, 2019, 33(19): 3219-3226.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060003  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3219
1 Allen M J, Tung V C, Kaner R B. Chemical Reviews,2010,110(1),132.2 Geim A K, Macdonald A H. Physics Today,2007,60(8),35.3 Huang X, Qi X Y, Boey F, et al. Chemical Society Reviews,2012,41(2),666.4 Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano,2011,5(1),26.5 He Y F, Gu J, Zhang X P, et al. Journal of Functional Materials,2018,49(3),03031(in Chinese).何云凤,顾健,张小平,等.功能材料,2018,49(3),03031.6 Ye R Q, Dong J C, Wang L Q, et al. Carbon,2018,132(6),623.7 Yu L, Wang L, Xu W C, et al. Journal of Environmental Sciences,2018,67(5),171.8 Li X L, Zhi L J. Chemical Society Reviews,2018,47,3189.9 Fu L, Xie K F, Zheng Y H, et al. Electronics,2018,7(2),15.10 Prasai D, Tuberquia J C, Harl R R, et al. ACS Nano,2012,6(2),1102.11 Berman D, Erdemir A, Sumant A V. Materials Today,2014,17(1),31.12 Renteria J D, Nika D L, Balandin A A. Applied Sciences,2014,4(4),525.13 Yoo J H, In J B, Bok Park J B, et al. Applied Physics Letters,2012,100(23),233124.14 Yi M, Shen Z G. Journal of Materials Chemistry A,2015,3(22),11700.15 Ishii J, Miyawaki Y, Yamasaki T, et al. Japanese Journal of Applied Physics,2017,56(8),085104.16 Arco L G D, Zhang Y, Kumar A, et al. IEEE Transactions on Nanotech-nology,2009,8(2),135.17 Eigler S, Enzelbergerheim M, Grimm S, et al. Advanced Materials,2013,25(26),3583.18 Datta D, Li J W, Shenoy V B. ACS Applied Materials & Interfaces,2014,6(3),1788.19 Terrones H, Lv R, Terrones M, et al. Reports on Progress in Physics,2012,75(6),062501.20 Boukhvalov D W, Katsnelson M I. Nano Letters,2008,8(12),4373.21 Hao F, Fang D N, Xu Z P. Applied Physics Letters,2011,99(4),041901.22 Dreyer D R, Park S, Bielawski C W, et al. Chemical Society Reviews,2009,39(1),228.23 Chen D, Feng H B, Li J H. Chemical Reviews,2012,112(11),6027.24 Liu H T, Liu Y Q, Zhu D B. Journal of Materials Chemistry,2011,21(10),3335.25 Guo B D, Liu Q, Chen E, et al. Nano Letters,2010,10(12),4975.26 Liang C, Wang Y L, Li T. Carbon,2015,82,506.27 Bhargava R, Khan S. Journal of Physics: Condensed Matter,2018,30(33),335703.28 Nebogatikova N A, Antonova I V, Erohin S V, et al. Nanoscale,2018,10(30),14499.29 Altan A I, Chen J. Nanoscale,2018,10(23),11052.30 Chin H T, Lee J J, Hofmann M, et al. Scientific Reports,2018,8(1),4046.31 Meenakshi S, Kaladevi G, Pandian K, et al. Ionics,2018,24(9),2807.32 Pruna A, Wu Z, Zapien J A, et al. Applied Surface Science,2018,441,936.33 Xu J J, Chen Y F, Dong Z Y, et al. Journal of Materials Science,2018,53,12770.34 Wang J, Wang L, Yang S B. Nano,2018,13(4),1850041.35 Zhang Y J, Li W F, Lu L H, et al. Electrochimica Acta,2018,265,497.36 Yousefi R, Azimi H R, Mahmoudian M R, et al. Applied Surface Science,2018,435,886.37 Zhao S L, Li M, Han M, et al. Advanced Functional Materials,2018,28(18),1706018.38 Chen Y J, Tian G H, Mao G J, et al. Applied Surface Science,2016,378,231.39 Jia Y, Zhang L Z, Du A j, et al. Advanced Materials,2016,28(43),9532.40 Navalón S, Herance J R, álvaro M, et al. Materials Horizons,2018,5(3),363.41 Yang L, Wang X, Wang J, et al. Nanotechnology,2018,29(34),345705.42 Feng D Y, Sun Y R, Yu F, et al. Journal of Functional Materials,2015,46(3),3009(in Chinese).冯冬燕,孙怡然,于飞,等.功能材料,2015,46(3),3009.43 Wang Z, Ren P G, Ren F, et al. Packaging Engineering,2017,38(13),10(in Chinese).王卓,任鹏刚,任芳,等.包装工程工程版,2017,38(13),10.44 Turner S, Yan W J, Long H, et al. The Journal of Physical Chemistry C,2018,122,20358.45 Kim K, Kang H, Lee C Y, et al. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures,2013,31(3),030602.46 Li L L, Fan L L, Sun M, et al. Colloids & Surfaces B Biointerfaces,2013,107(7),76.47 Liu Y M, Liu H L, Chu Y, et al. Advanced Materials Interfaces,2018,5,1701640.48 Wlazł o M, Majewski J A. The Journal of Chemical Physics,2018,148(9),094703.49 Sangeetha D N, Selvakumar M. Applied Surface Science,2018,453,132.50 Yuan J, Yang M P, Hu Q L, et al. Journal of CO2 Utilization,2018,24,334.51 Szroeder P, Sagalianov I Y, Radchenko T M, et al. Applied Surface Science,2018,442,185.52 Chen J, Hong M, Chen J F, et al. Applied Surface Science,2018,443,367.53 Gao J Y, Yuan Q L, Ye C, et al. Materials,2018,11(4),489.54 Wang K, Wang J X, Wu Y, et al. Organic Electronics,2018,56,221.55 Huang S S, Wang W F, Chen D Y, et al. Electrochimica Acta,2018,281,769.56 Zhang Z A, Fu Y, Yang X, et al. Chemnanomat,2015,1(6),409.57 Xie D, Tang W J, Wang Y D, et al. Nano Research,2016,9(6),1618.58 Nie G D, Lu X F, Lei J Y, et al. Electrochimica Acta,2015,154,24.59 Cai D D, Wang C S, Shi C Y, et al. Journal of Alloys & Compounds,2018,731,235.60 Zheng X W, Yu H T, Xing R G, et al. Electrochimica Acta,2018,260,504.61 Jayalakshmi G, Saravanan K, Pradhan J, et al. Journal of Luminescence,2018,203,1.62 Ismail A M, Mohammed M I, Fouad S S, et al. Journal of Molecular Structure,2018,1170(15),51.63 Chalangar E, Machhadani H, Lim S H, et al. Nanotechnology,2018,29,415201.64 Solati E, Savadkoohi M, Dorranian D, et al. Optical and Quantum Electronics,2018,50,268.65 Tong Q, Wang Y H, Yu, X X, et al. Nanotechnology,2018,29(16),165706.66 Jana A, Scheer E. Langmuir,2018,34(4),1497.67 Pham C V, Repp S, Thomann R, et al. Nanoscale,2016,8(18),9682.68 Shi H F, Wang C, Sun Z P, et al. Optics Express,2014,22(16),19375.69 Zhu B H, Wang F F, Cao Y W, et al. Applied Physics Letters,2016,108(25),252106.70 Park I, Kim T I, Yoon T, et al. Advanced Functional Materials,2018,28(10),1704435.71 Carles R, Bayle M, Bonafos C. Nanotechnology,2018,29(17),175301.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[14] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[15] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed